CSC236 fall 2012
recursion, induction, correctness

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 2
Outline

binary search
recursive binary search

def recBinSearch(x, A, b, e):
1. if b == e:
2. if x \leq A[b]:
3. return b
4. else:
5. return e + 1
6. else:
7. m = (b + e) // 2 # midpoint
8. if x \leq A[m]:
9. return recBinSearch(x, A, b, m)
10. else:
11. return recBinSearch(x, A, m+1, e)
conditions, pre- and post-

- x and elements of A are comparable
- e and b are valid indices, $b \leq e$
- $A[b..e]$ is sorted non-decreasing

RecBinSearch(x, A, b, e) terminates and returns index p

- $b \leq p \leq e + 1$
- $b < p \implies A[p - 1] < x$
- $p \leq e \implies x \leq A[p]$

(except for boundaries, returns p so that $A[p - 1] < x \leq A[p]$)
precondition ⇒ termination and postcondition

Proof: induction on \(n = e - b + 1 \)

Base case, \(n = 1 \): Terminates because there are no loops or further calls, returns \(x \leq A[b = p] \iff p = b = e \) is returned. \(x > A[b = p - 1] \iff p = b + 1 \) returned, so postcondition satisfied. Notice that the choice forces if-and-only-if.

Induction step: Assume \(n > 1 \) and that the postcondition is satisfied for inputs of size \(1 \leq k < n \) that satisfy the precondition. Call RecBinSearch(A,x,b,e) when \(n = e - b + 1 > 1 \). Since \(b < e \) in this case, the test on line 1 fails, and line 7 executes. Exercise: \(b \leq m < e \) in this case. There are two cases, according to whether \(x \leq A[m] \) or \(x > A[m] \).
Case 1: $x \leq A[m]$

Show that IH applies to $RBS(x, A, b, m)$

Translate the postcondition to $RBS(x, A, b, m)$

- $b \leq p \leq m + 1$
- $b < p \Rightarrow A[p-1] \leq x$
- $p \leq m \Rightarrow x \leq A[p]$

Show that $RBS(x, A, b, e)$ satisfies postcondition

- $b \leq p \leq m + 1 \leq e \leq e + 1$
- $b < p \Rightarrow A[p-1] \leq x$
- $p \leq e \Rightarrow x \leq A[p]$ must show $x \leq A[p]$
Case 2: \(x > A[m] \)

- Show that IH applies to \(\text{RBS}(x,A,m+1,e) \)
- Translate postcondition to \(\text{RBS}(x,A,m+1,e) \)
 - \(b < m+1 \leq p \leq e+1 \)
 - \(p \leq e \Rightarrow x \leq A[p] \)
 - \(m+1 < p \Rightarrow A[p-1] < x \)

- Show that \(\text{RBS}(x,A,b,e) \)
 - \(b \leq p \leq e+1 \) \(\text{by IH and } m \geq b \)
 - \(p \leq e \Rightarrow x \leq A[p] \) \(\text{by IH} \)
 - Show \(b < p \Rightarrow A[p-1] < x \)
 - \(p > m+1 \), then \(A[p-1] < x \) \(\text{by IH} \)
 - \(p \leq m+1 \Rightarrow p = m+1 \), then \(x > A[m] = A[p-1] \)
what could go wrong?

\[
m = \left\lfloor \frac{e+1}{2.0} \right\rfloor
\]

- \(m = \left\lfloor \frac{e+b}{2.0} \right\rfloor \)

- \(x < A[m] \) — prove or counterexample

- ...

- Either prove correct, or find a counter-example