Using *Introduction to the Theory of Computation, Chapter 2*
Outline

binary search
recursive binary search

\[0 \leq b \leq e < \text{len}(A) \]
array els & x are comparable
\[A \text{ is sorted non-decreasing} \]
def recBinSearch(x, A, b, e):
 if b == e:
 if x <= A[b]:
 return b
 else:
 return e + 1
 else:
 m = (b + e) // 2 # midpoint
 if x <= A[m]:
 return recBinSearch(x, A, b, m)
 else:
 return recBinSearch(x, A, m+1, e)

 \[\text{post-terminate} \]
 \[\text{return } p \]
 \[b \leq p \leq e+1 \]
 \[b < p \Rightarrow A[p] \geq x \]
 \[b \leq p \Rightarrow A[p] \geq x \]
conditions, pre- and post-

pre

- x and elements of A are comparable
- e and b are valid indices, $b \leq e$
- $A[b..e]$ is sorted non-decreasing

post condition

RecBinSearch(x, A, b, e) terminates and returns index p

- $b \leq p \leq e + 1$
- $b < p \Rightarrow A[p - 1] < x$
- $p \leq e \Rightarrow x \leq A[p]$

(except for boundaries, returns p so that $A[p - 1] < x \leq A[p]$)
precondition \Rightarrow termination and postcondition

Proof: induction on $n = e - b + 1$

$\quad b < p \Rightarrow A[p-1] < x \checkmark \quad \quad p \leq e \Rightarrow x \leq A[p]$ \checkmark

Base case, $n = 1$: Terminates because there are no loops or further calls, returns $x \leq A[b = p] \iff p = b = e$ is returned. $x > A[b = p - 1] \iff p = b + 1$ returned, so postcondition satisfied. Notice that the choice forces if-and-only-if.

Induction step: Assume $n > 1$ and that the postcondition is satisfied for inputs of size $1 \leq k < n$ that satisfy the precondition. Call RecBinSearch(A,x,b,e) when $n = e - b + 1 > 1$. Since $b < e$ in this case, the test on line 1 fails, and line 7 executes. Exercise: $b \leq m < e$ in this case. There are two cases, according to whether $x \leq A[m]$ or $x > A[m]$.
Case 1: $x \leq A[m]$

- Show that IH applies to RBS(x,A,b,m)
- Translate the postcondition to RBS(x,A,b,m)
 - terminates, returns p, $b \leq p \leq m + 1$
 - $b < p \Rightarrow A[p-1] < x$
 - $p \leq m \Rightarrow A[p] \geq x$
- Show that RBS(x,A,b,e) satisfies postcondition
 - termination (from IH)
 - $m + 1 \leq e \leq e + 1 \Rightarrow b \leq p \leq m + 1 \leq e + 1$ (by IH)
 - $b < p \Rightarrow A[p] \geq x$
 - $\beta \geq p \leq e + 1$, by IH, so must show
 - $A[p] \geq x$, $p = m$, then $x \leq A[p]$ by IH
 - $p = m + 1$, then $x \leq A[m] \leq A[p]$
Case 2: \(x > A[m] \)

1. \(1 \leq e - (m+1) + 1 < e - b + 1 \)
 \[m - b \geq 0 \]

\[
\begin{align*}
1 \leq e - m & \quad \forall e \geq m \\
& \text{IH, IH says:}
\end{align*}
\]

- Show that IH applies to \(\text{RBS}(x,A,m+1,e) \)
- Translate postcondition to \(\text{RBS}(x,A,m+1,e) \)
 - Terminate with
 - \(m+1 < p \Rightarrow A[p-1] < x \)
 - \(p \leq e \Rightarrow A[p] \geq x \)

- Show that \(\text{RBS}(x,A,b,e) \)
 - Termination: \(b \leq m+1 \leq p \leq e+1 \) by IH and \(m \geq b \)
 - \(p \leq e \Rightarrow A[p] \geq x \) directly from IH
 - \(b < p \Rightarrow b = m < m+1 \) must show
 - \(A[p-1] \leq x \)
 - \(m+1 < p \), then \(A[p-1] \leq x \) by IH
 - \(m+1 = p \), then \(A[p-1] = A[m] < x \) by case
what could go wrong?

- \(m = \left\lfloor \frac{e + b}{2.0} \right\rfloor \)

- \(x < A[m] \)

- ...

- Either prove correct, or find a counter-example
recursive and iterative
mergesort

MergeSort(A, b, e):
1. if b == e: return
2. m = (b + e) / 2 # integer division
3. MergeSort(A, b, m) \(1 \leq m - b + 1 < e - b + 1\)
4. MergeSort(A, m+1, e) \(1 \leq e - m < e - b + 1\)
5. for i = b,...,e: B[i] = A[i]
6. c = b
7. d = m+1
8. for i = b,...,e:
 if d > e or (c <= m and B[c] < B[d]):
 A[i] = B[c]
 else:
 A[i] = B[d]
 c = c + 1
else:
 A[i] = B[d]
9. i = i+1
10. A[i] = B[c]
11. c = c + 1
13. d = d + 1
conditions, pre- and post-

\[p_{\text{pre}} \]

- \(b \) and \(e \) are natural numbers, \(0 \leq b \leq e < \text{len}(A) \).
- Elements of \(A \) are comparable

\[\checkmark \quad \text{post terminates} \]

- \(A'[b..e] \) contains the same elements as \(A[b..e] \), but sorted in non-decreasing order (use notation \(A' \) for \(A \) after calling \(\text{MergeSort}(A,b,e) \)). All other elements of \(A' \) are unchanged from \(A \).
Proof of correctness of MergeSort(A,b,e)
by induction on $n = e - b + 1$ for all arrays of size n,
(precondition+execution)\Rightarrow(termination+postcondition)

Base case, $1 = e - b + 1$: Assume MergeSort(A,b,e) is called
with $\text{len}(A) = 1$ preconditions satisfied. Then $0 \leq e \leq b \leq 0$,
so $e = b$, and the algorithm terminates with a (trivially)
sorted A', satisfying the precondition.

Induction step: Assume $n \in \mathbb{N}$, $n > 1$, and for all natural
numbers k, $1 \leq k < n$, that MergeSort on all arrays of size k
that satisfy the precondition and run will terminate and satisfy
the postcondition. Assume MergSort(A,b,e) is executed and
$n = e - b + 1$.
The test on line 1 fails, and m is set to $(b + e)/2$, strictly less than e (exercise).

Does the IH apply to $\text{MergeSort}(A, b, m)$ and $\text{MergeSort}(A, m+1, e)$? Translate the IH into postconditions for $\text{MergeSort}(A, b, m)$ and $\text{MergeSort}(A, m+1, e)$.

Now we need iterative correctness for the merge...
iterative correctness

partial correctness plus termination

- Preconditions plus termination imply the postcondition.
 Probably needs a loop invariant

- termination — construct a decreasing sequence in \(\mathbb{N} \).