CSC236 fall 2012

recursion, induction, correctness

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 2
Outline

binary search
def recBinSearch(x, A, b, e):
 if b == e:
 if x <= A[b]:
 return b
 else:
 return e + 1
 else:
 m = (b + e) // 2 # midpoint
 if x <= A[m]:
 return recBinSearch(x, A, b, m)
 else:
 return recBinSearch(x, A, m+1, e)
conditions, pre- and post-

- x and elements of A are comparable
- e and b are valid indices, $b \leq e$
- $A[b..e]$ is sorted non-decreasing

RecBinSearch(x, A, b, e) terminates and returns index p

- $b \leq p \leq e + 1$
- $b < p \Rightarrow A[p - 1] < x$
- $p \leq e \Rightarrow x \leq A[p]$

(except for boundaries, returns p so that $A[p - 1] < x \leq A[p]$)
precondition \Rightarrow termination and postcondition

Proof: induction on $n = e - b + 1$

Base case, $n = 1$: Terminates because there are no loops or further calls, returns $x \leq A[b = p] \iff p = b = e$ is returned. $x > A[b = p - 1] \iff p = b + 1$ returned, so postcondition satisfied. Notice that the choice forces if-and-only-if.

Induction step: Assume $n > 1$ and that the postcondition is satisfied for inputs of size $1 \leq k < n$ that satisfy the precondition. Call $\text{RecBinSearch}(A,x,b,e)$ when $n = e - b + 1 > 1$. Since $b < e$ in this case, the test on line 1 fails, and line 7 executes. Exercise: $b \leq m < e$ in this case. There are two cases, according to whether $x \leq A[m]$ or $x > A[m]$.
Case 1: $x \leq A[m]$

- Show that IH applies to $\text{RBS}(x,A,b,m)$
- Translate the postcondition to $\text{RBS}(x,A,b,m)$

- Show that $\text{RBS}(x,A,b,e)$ satisfies postcondition
Case 2: $x > A[m]$

- Show that IH applies to $\text{RBS}(x, A, m+1, e)$
- Translate postcondition to $\text{RBS}(x, A, m+1, e)$

- Show that $\text{RBS}(x, A, b, e)$
what could go wrong?

- $m = \left\lfloor \frac{e+b}{2.0} \right\rfloor$

- $x < A[m]$

- ...

- Either prove correct, or find a counter-example
recursive and iterative

mergesort

\[
\begin{align*}
\text{MergeSort}(A, b, e): & \\
1. \text{if } b == e: & \text{ return} \\
2. m = (b + e) / 2 \quad \# \text{ integer division} \\
3. \text{MergeSort}(A, b, m) \\
4. \text{MergeSort}(A, m+1, e) \\
5. \text{for } i = b, \ldots, e: & \quad B[i] = A[i] \\
6. c = b \quad e-i \in \mathbb{N}. \\
7. d = m+1 \\
8. \text{for } i = b, \ldots, e: \\
9. \quad \text{if } d > e \text{ or } (c \leq m \text{ and } B[c] < B[d]): & \quad A[i] = B[c] \\
10. \quad c = c + 1 \\
11. \quad \text{else: } \quad A[i] = B[d] \\
12. \quad d = d + 1
\end{align*}
\]

preconditions

\begin{itemize}
\item \(A\) \(e, b, \) valid indices
\item \(0 \leq b \leq e < \text{len}(A)\)
\end{itemize}

post conditions

\begin{itemize}
\item any \(i, b \leq j, i \leq e\)
\item \(j < i \Rightarrow A[j] \leq A[i]\)
\end{itemize}
conditions, pre- and post-

pre

- b and e are nature numbers, $0 \leq b \leq e < \text{len}(A)$.
- elements of A are comparable

terminates with

- $A'[b..e]$ contains the same elements as $A[b..e]$, but sorted in non-decreasing order (use notation A' for A after calling MergeSort(A, b, e)). All other elements of A' are unchanged.

$A'[b..m]$ contains elts except sorted as $A[b..m]$

$A'[m+1..e]$ contains elts as $A'[m+1..e]$ except sorted. (it is other elts changed.}

\[A'[b..m] \]

\[A'[m+1..e] \]
Proof of correctness of MergeSort(A,b,e)

by induction on \(n = e - b + 1 \) for all arrays of size \(n \),
(precondition+execution) \(\Rightarrow \) (termination+postcondition)

Base case, \(1 = e - b + 1 \): Assume MergeSort(A,b,e) is called with \(\text{len}(A) = 1 \) preconditions satisfied. Then \(0 \leq e \leq b \leq 0 \), so \(e == b \), and the algorithm terminates with a (trivially) sorted \(A' \), satisfying the precondition.

Induction step: Assume \(n \in \mathbb{N}, n > 1 \), and for all natural numbers \(k, 1 \leq k < n \), that MergeSort on all arrays of size \(k \) that satisfy the precondition and run will terminate and satisfy the postcondition. Assume MergeSort(A,b,e) is executed and \(n = e - b + 1 \).
The test on line 1 fails, and m is set to $(b + e)/2$, strictly less than e (exercise).

\[
\begin{align*}
 e - b + 1 & > 1 \\
 \Rightarrow e - b & > 0 \\
 e & > b
\end{align*}
\]

Does the IH apply to $\text{MergeSort}(A,b,m)$ and $\text{MergeSort}(A,m+1,e)$? Translate the IH into postconditions for $\text{MergeSort}(A,b,m)$ and $\text{MergeSort}(A,m+1,e)$.

Now we need iterative correctness for the merge...
iterative correctness

partial correctness plus termination

\[A[\ldots b \ldots m \overset{\text{sorted}}{m+1} \ldots e \ldots] \]

\[A[\ldots b \ldots \overset{\text{sorted}}{\ldots} e \ldots] \]

- Preconditions plus termination imply the postcondition.
 Probably needs a loop invariant

- termination — construct a decreasing sequence in \(\mathbb{N} \).

 \(n_i, n_{i+1}, \ldots, n_k = 0 \) (termination condition)