CSC236 fall 2012
more complexity: mergesort

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 3
Outline

divide and conquer (recombine)

using the Master Theorem

Notes
General case revisit...

Class of algorithms: partition problem into \(b \) roughly equal subproblems, solve, and recombine:

\[
T(n) = \begin{cases}
 k & \text{if } n \leq B \\
 a_1 T(\lfloor n/b \rfloor) + a_2 T(\lfloor n/b \rfloor) + f(n) & \text{if } n > B
\end{cases}
\]

where \(B, k > 0, a_1, a_2 \geq 0, \) and \(a_1 + a_2 > 0. \) \(f(n) \) is the cost of splitting and recombining.
Master Theorem
(for divide-and-conquer recurrences)

If f from the previous slide has $f \in \theta(n^d)$, then

\[T(n) = \begin{cases}
\theta(n^d) & \text{if } a < b^d \\
\theta(n^d \log n) & \text{if } a = b^d \\
\theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases} \]
Proof sketch

1. Unwind the recurrence, and prove a result for $n = b^k$

2. Prove that T is non-decreasing

3. Extend to all n, similar to MergeSort
multiply lots of bits
what if they don’t fit into a machine instruction?

\[
\begin{array}{c}
1101 \\
\times 1011 \\
\end{array}
\]
divide and recombine recursively...

\[
x y = 2^n x_1 y_1 + 2^{n/2} (x_1 y_0 + y_1 x_0) + x_0 y_0
\]
compare costs

n n-bit additions versus:

1. divide each factor (roughly) in half
2. multiply the halves (recursively, if they’re too big)
3. combine the products with shifts and adds
Gauss’s trick

\[xy = 2^n x_1 y_1 + x_0 y_0 + 2^{n/2} ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0) \]
Gauss’s payoff

lose one multiplication

1. divide each factor (roughly) in half
2. sum the halves
3. multiply the sum and the halves Gauss-wise
4. combine the products with shifts and adds
closest point pairs

see Wikipedia
divide-and-conquer v0.1
how many close points fit?
an $n \lg n$ algorithm

P is a set of points

1. Construct (sort) P_x and P_y
2. For each recursive call, construct L_x, L_y, R_x, R_y
3. Recursively find closest pairs (l_0, l_1) and (r_0, r_1), with minimum distance δ
4. V is the vertical line splitting L and R, D is the δ-neighbourhood of V, and D_y is D ordered by y-ordinate
5. Traverse D_y looking for minimum pairs 15 places apart
6. Choose the minimum pair from D_y versus (l_0, l_1) and (r_0, r_1).