CSC236 fall 2012
more complexity: mergesort

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 3
Outline

divide and conquer (recombine)

using the Master Theorem

Notes
General case
revisit...

Class of algorithms: partition problem into \(b \) roughly equal subproblems, solve, and recombine:

\[
T(n) = \begin{cases}
 k & \text{if } n \leq B \\
 a_1 T(\lfloor n/b \rfloor) + a_2 T(\lfloor n/b \rfloor) + f(n) & \text{if } n > B
\end{cases}
\]

where \(B, k > 0, a_1, a_2 \geq 0, \) and \(a_1 + a_2 > 0. \) \(f(n) \) is the cost of splitting and recombining.
Master Theorem
(for divide-and-conquer recurrences)

If \(f \) from the previous slide has \(f \in \Theta(n^d) \), then

\[
T(n) = \begin{cases}
\Theta(n^d) & \text{if } a < b^d \\
\Theta(n^d \log n) & \text{if } a = b^d \\
\Theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases}
\]
Proof sketch

1. Unwind the recurrence, and prove a result for \(n = b^k \)

2. Prove that \(T \) is non-decreasing

3. Extend to all \(n \), similar to MergeSort
multiply lots of bits
what if they don’t fit into a machine instruction?

\[
\begin{array}{c}
1101 \\
\times 1011 \\
\hline
\end{array}
\]
divide and recombine recursively...

\[xy = 2^n x_1 y_1 + 2^{n/2} (x_1 y_0 + y_1 x_0) + x_0 y_0 \]
compare costs

\[n \ n\text{-bit additions versus:} \]

1. divide each factor (roughly) in half
2. multiply the halves (recursively, if they’re too big)
3. combine the products with shifts and adds
Gauss’s trick

$$h^2 \rightarrow h^{\log_2 3}$$

$$xy = 2^n x_1 y_1 + x_0 y_0 + 2^{n/2} ((x_1 + x_0)(y_1 + y_0) - x_1 y_1 - x_0 y_0)$$
Gauss’s payoff
lose one multiplication

1. divide each factor (roughly) in half
2. sum the halves
3. multiply the sum and the halves Gauss-wise
4. combine the products with shifts and adds
closest point pairs
see Wikipedia

\[P = \left[(x_0, y_0), (x_1, y_1), (x_2, y_2), \ldots \right] \]

Brute force \((\frac{n}{2}) \sim \Theta(n^2) \)

Sort \(P \) by \(x, y \)
\(\rightarrow P_x, P_y \)
\(n \log n \)

Recursively find min \(L \) on \(P_x \)
Recursively find min \(R \) on \(P_y \)
divide-and-conquer v0.1

$$T(n) \begin{cases} \sum_{k=1}^{\lfloor n/2 \rfloor} T(k) + T(\lfloor n/2 \rfloor) + f(n) & n > 3 \\ n \leq 3 & \end{cases}$$
\[\sqrt{\frac{\delta^2}{4} + \frac{\delta^2}{4}} = \frac{\sqrt{2}}{2}\delta\]

\[\min(L, R) = \delta > 0\]

\[D_y \rightarrow \Theta(n)\]
an $n \lg n$ algorithm

1. Construct (sort) P_x and P_y
2. For each recursive call, construct L_x, L_y, R_x, R_y
3. Recursively find closest pairs (l_0, l_1) and (r_0, r_1), with minimum distance δ
4. V is the vertical line splitting L and R, D is the δ-neighbourhood of V, and D_y is D ordered by y-ordinate
5. Traverse D_y looking for minimum pairs 15 places apart
6. Choose the minimum pair from D_y versus (l_0, l_1) and (r_0, r_1).

P is a set of points