CSC236 fall 2012
more complexity: mergesort

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation, Chapter 3
Outline

vexing complexity

mergesort

Divide-and-conquer

Notes
Upper bound on $T(n)$

trouble!
recurrence for MergeSort

MergeSort(A, b, e):
 if b == e: return
 m = (b + e) / 2
 MergeSort(A, b, m)
 MergeSort(A, m+1, e)
 # merge sorted A[b..m] and A[m+1..e] back into A[b..e]
 for i = b,...,e: B[c] = A[c]
 c = b
d = m+1
 for i = b,...,e:
 if d > e or (c <= m and B[c] < B[d]):
 A[i] = B[c]
 c = c + 1
 else: # d <= e and (c > m or B[c] >= B[d])
 A[i] = B[d]
 d = d + 1
Unwind (repeated substitution)

\[T(n) = 2T(n/2) + n + 1 \]
Prove that T is non-decreasing

See Course Notes, Lemma 3.6 Exercise: Prove the recurrence for binary search is non-decreasing
Prove $T \in O(n \lg n)$ for general case

$$T(n) = T(\lfloor n/2 \rfloor) + T(\lceil n/2 \rceil) + n + 1$$
General case

Class of algorithms: partition problem into \(b \) roughly equal subproblems, solve, and recombine:

\[
T(n) = \begin{cases}
 k & \text{if } n \leq B \\
 a_1 T(\lfloor n/b \rfloor) + a_2 T(\lceil n/b \rceil) + f(n) & \text{if } n > B
\end{cases}
\]

where \(B, k > 0, a_1, a_2 \geq 0, \) and \(a_1 + a_2 > 0. \) \(f(n) \) is the cost of splitting and recombining.
Master Theorem

If f from the previous slide has $f \in \theta(n^d)$, then

$$T(n) = \begin{cases}
\theta(n^d) & \text{if } a < b^d \\
\theta(n^d \log n) & \text{if } a = b^d \\
\theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases}$$
Proof sketch

1. Unwind the recurrence, and prove a result for $n = b^k$

2. Prove that T is non-decreasing

3. Extend to all n, similar to MergeSort