CSC236 fall 2012

regular languages, regular expressions

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7
Outline

regular expressions, regular languages

notes
they’re equivalent:

\[L = L(M) \] for some DFSA \(M \) \(\iff \) \(L = L(M') \) for some NFSA \(M' \) \(\iff \)

\[L = L(R) \] for some regular expression \(R \)

step 1: convert \(L(M) \) to \(L(R) \), eliminate states
they’re equivalent:

\[L = L(M) \] for some DFSA \(M \) \(\Leftrightarrow \)
\[L = L(M') \] for some NFSA \(M' \) \(\Leftrightarrow \)
\[L = L(R) \] for some regular expression \(R \)

step 1: convert \(L(M) \) to \(L(R) \), eliminate states

\[
R^* S (Q + TR^* S)^* \]
dynamic (table based) program
equivalence...

state elimination recipe for state q

1. $s_1 \ldots s_m$ are states with transitions to q, with labels $S_1 \ldots S_m$
2. $t_1 \ldots t_n$ are states with transitions from q, with labels $T_1 \ldots T_n$
3. Q is any self-loop on q
4. Eliminate q, and add (union) transition label $S_i Q^* T_j$ from s_i to t_j.

\[
\text{regex} \quad R^* S (Q + T R^* S)^*
\]
equivalence:
step 2: convert \(L(R) \) to \(L(M) \):
start with \(\emptyset, \varepsilon, a \in \Sigma \)

\[
\Sigma = \{ 0, 3 \}
\]

\[
s \rightarrow \bigcirc
\]

accepts \(L(\emptyset) \)

\[
s \rightarrow \bigcirc \rightarrow \bigcirc
\]

accepts \(L(\varepsilon) \)

\[
s \rightarrow \bigcirc \rightarrow \bigcirc \rightarrow \bigcirc
\]

accepts \(L(3) \)
equivalence...

step 2.5: convert $L(R)$ to $L(M)$:
union, concatenation, stars

M_1 accepts $L(R)$, M_2 accepts $L(S)$

M accepts $L(R+S)$

M accepts $L(RS)$

M accepts $L(R^*)$
Language $L = \{ s \in \{0,1\}^* \mid s = 1^n0^n, n \in \mathbb{N} \}$

M1 accepts 0
$S \rightarrow O \quad M_1$
$S \rightarrow O \quad M_2$

E.g.
grep

summer
socks
sacks

notes