CSC236 fall 2012
regular expressions

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/236/F12/
416-978-5899

Using Introduction to the Theory of Computation,
Chapter 7
Outline

regular expressions

product, non-deterministic FSAs

regular languages

notes
another way to define languages
In addition to the language accepted by DFSA \(L(M) \)
and set description \(L = \{\ldots\} \).

Definition: The regular expressions (regexps or REs) over
alphabet \(\Sigma \) is the smallest set such that:

1. \(\emptyset \), \(\epsilon \), and \(a \), for every \(a \in \Sigma \) are REs over \(\Sigma \)
2. if \(T \) and \(S \) are REs over \(\Sigma \), then so are:
 - \(T + S \) (union) — lowest precedence operator
 - \(TS \) (concatenation) — middle precedence operator
 - \(T^* \) (star) — highest precedence
regular expression to language:

The $L(R)$, the language denoted (or described) by R is defined by structural induction:

Basis: If R is a regular expression by the basis of the definition of regular expressions, then define $L(R)$:

- $L(\emptyset) = \emptyset$ (the empty language)
- $L(\varepsilon) = \{\varepsilon\}$ (the language consisting of just the empty string)
- $L(a) = \{a\}$ (the language consisting of the one-symbol string)

Induction step: If R is a regular expression by the induction step of the definition, then define $L(R)$:

- $L(S + T) = L(S) \cup L(T)$
- $L(ST) = L(S)L(T)$
- $L(T^*) = L(T)^*$
regexp examples

- \((L(0 + 1))^*\) = \{0, 1\}

- \(L((0 + 1)^*)\) All binary strings over \{0, 1\}

- \(L((01)^*) = \{\varepsilon, 01, 0101, 010101, \ldots\} \overset{\LARGE{\rightarrow}}{\LARGE{(0^*1^*)^*}}\)

- \(L(0^*1^*)\) 0 or more 0s followed by 0 or more 1s. \(\overset{\LARGE{\rightarrow}}{\LARGE{L(0^*) \cup L(1^*)}}\)

- \(L(0^* + 1^*)\) 0 or more 0s or 0 or more 1s. \(\overset{\LARGE{\rightarrow}}{\LARGE{\{\varepsilon, 1, 11, 001, \ldots\}}\}

- \(L((0 + 1)(0 + 1)^*)\) Non-empty binary strings over \{0, 1\}.\)
example

$L = \{ x \in \{0, 1\}* \mid x \text{ begins and ends with a different bit} \}$

\[R = \left(0(0+1)^* 1 + 1(1+0)^* 0 \right) \quad \text{or} \quad \left(0^* 1 1^* 0^2 \right) \]

prove \[L = L(R) \]
\[L \subseteq L(R) \land L(R) \subseteq L \]

Proof (not really): to show \(L(R) \subseteq L \)

assume \(s \) is an arbitrary element of \(L(R) \).

Then, \textit{WLOG} (switch 0s and is otherwise)

assume \(s \in L(0(0+1)^* 1) \).

Then, \(s \) has the form \(tuv \), where \(t \in L(0) \), \(u \in L(0+1)^* \), \(v \in L(1) \)

without loss of generality.
RE identities

some of these follow from set properties...
others require some proof (see 7.2.5 example)

\[L(R) \cup L(S) \equiv L(S) + L(R) \]

- communitativity of union: \(R + S \equiv S + R \)
- associativity of union: \((R + S) + T \equiv R + (S + T) \)
- associativity of concatenation: \((RS)T \equiv R(ST) \)
- left distributivity: \(R(S + T) \equiv RS + RT \)
- right distributivity: \((S + T)R \equiv SR + TR \)
- identity for union: \(R + \emptyset \equiv R \)
- identity for concatenation: \(R\epsilon \equiv R \equiv \epsilon R \)
- annihilator for concatenation: \(\emptyset R \equiv \emptyset \equiv R\emptyset \)
- idempotence of Kleene star: \((R^*)^* \equiv R^* \)

\[L((R^*)^*)^* \equiv (R^*)^* = R^* \]
product construction

L is the language of binary strings over $\{0, 1\}^*$ with two 1s in a row and an even number of 0s.

idea: $\delta((q_i, q_j), a) = (\delta(q_i, a), \delta(q_j, a))$
non-deterministic FSA (NFSA) example

FSA that accepts $L((010 + 01)^*)$

Construct a corresponding DFSA

$$F = \mathcal{E}q_0 \mathcal{E}$$
$$\delta^*(q_0, 010) = \mathcal{E}q_0, 010$$

Non-empty intersection with F

Transistion function is between sets of accepting states and if string drives our machine to a set that includes an accepting state, said string is accepted.

$$\hat{M} = (Q, \delta, I, F, \Sigma)$$
$$M = \{ Q = \hat{P}(Q), \delta, \Sigma \}$$
they’re equivalent:

\(L = L(M) \) for some DFSA \(M \) \(\Leftrightarrow \) \(L = L(M') \) for some NFSA \(M' \) \(\Leftrightarrow \) \(L = L(R) \) for some regular expression \(R \)

\[
\begin{align*}
L(R) &= L(M_1) \\
L(S) &= L(M_2) \\
\text{Want} \quad L(R+S) &= \# L(M_1) \cup L(M_2)
\end{align*}
\]
notes