Using *Introduction to the Theory of Computation*, Chapter 7
Outline

regular expressions

product, non-deterministic FSAs

regular languages

notes
another way to define languages
In addition to the language accepted by DFSA $L(M)$ and set description $L = \{ \ldots \}$.

Definition: The regular expressions (regexps or REs) over alphabet Σ is the smallest set such that:

1. \emptyset, ε, and a, for every $a \in \Sigma$ are REs over Σ
2. if T and S are REs over Σ, then so are:
 - $T + S$ (union) — lowest precedence operator
 - TS (concatenation) — middle precedence operator
 - T^* (star) — highest precedence
regular expression to language:

The \(L(R) \), the language denoted (or described) by \(R \) is defined by structural induction:

Basis: If \(R \) is a regular expression by the basis of the definition of regular expressions, then define \(L(R) \):

- \(L(\emptyset) = \emptyset \) (the empty language)
- \(L(\varepsilon) = \{\varepsilon\} \) (the language consisting of just the empty string)
- \(L(a) = \{a\} \) (the language consisting of the one-symbol string)

Induction step: If \(R \) is a regular expression by the induction step of the definition, then define \(L(R) \):

- \(L(S + T) = L(S) \cup L(T) \)
- \(L(ST) = L(S)L(T) \)
- \(L(T^*) = L(T)^* \)
regexp examples

- \((L(0 + 1))^*\) = \{0, 1\}

- \(L((0 + 1)^*)\) All binary strings over \{0, 1\}

- \(L((01)^*) = \{\epsilon, 01, 0101, 010101, \ldots\}\)

- \(L(0^*1^*)\) 0 or more 0s followed by 0 or more 1s.

- \(L(0^* + 1^*)\) 0 or more 0s or 0 or more 1s.

- \(L((0 + 1)(0 + 1)^*)\) Non-empty binary strings over \{0, 1\}.
example

$L = \{ x \in \{0,1\}^* \mid x \text{ begins and ends with a different bit} \}$

\[R = \left(\frac{0(0+1)^*1}{1(1+0)^*0} \right) + 1(1+0)^*0 \]

prove \[L = L(R) \]

\[L \subseteq L(R) \land L(R) \subseteq L \]

Proof (not really): to show \(L(R) \subseteq L \)

assume \(s \) is an arbitrary element of \(L(R) \).

Then, \(\text{WLOG} \) (switch 0s and 1s otherwise)

assume \(s \in L(0(0+1)^*1) \). Then, \(s \) has the form \(tuv \), where \(t \in L(0) \), \(u \in L((0+1)^* \) \)

\(v \in L(1) \)

without loss of generality.
RE identities

some of these follow from set properties...
others require some proof (see 7.2.5 example)

\[L(R) \cup L(S) \equiv L(S) + L(R) \]

- communitativity of union: \(R + S \equiv S + R \)
- associativity of union: \((R + S) + T \equiv R + (S + T)\)
- associativity of concatenation: \((RS)T \equiv R(ST)\)
- left distributivity: \(R(S + T) \equiv RS + RT\)
- right distributivity: \((S + T)R \equiv SR + TR\)
- identity for union: \(R + \emptyset \equiv R\)
- identity for concatenation: \(R\epsilon \equiv R \equiv \epsilon R\)
- annihilator for concatenation: \(\emptyset R \equiv \emptyset \equiv R\emptyset\)
- idempotence of Kleene star: \((R^\ast)^\ast \equiv R^\ast\)

\[\mathbb{E}((R^\ast)^\ast)^\ast \equiv (R^\ast)^\ast \equiv R^\ast \]
product construction

L is the language of binary strings over $\{0, 1\}^*$ with two 1s in a row and an even number of 0s.

idea: $\delta((q_i, q_j), a) = (\delta(q_i, a), \delta(q_j, a))$
non-deterministic FSA (NFSA) example

FSA that accepts $L((010 + 01)^*)$

Construct a corresponding DFSA

Transition function is between sets of accepting states and if string drives our machine to a set that includes an accepting state, said string is accepted.

\[M = \{ Q, \delta, q_0, F, \Sigma \} \]

\[\hat{M} = \{ Q, \delta', q_0, F, \Sigma \} \]
they’re equivalent:

\[L = L(M) \text{ for some DFSA } M \iff L = L(M') \text{ for some NFSA } M' \iff L = L(R(R)) \text{ for some regular expression } R \]