Using *Introduction to the Theory of Computation*, Chapter 7
Outline

formal languages

FSAs

notes
some definitions

alphabet: finite, non-empty set of symbols, e.g. \(\{a, b\} \) or \(\{0, 1, -1\} \). Conventionally denoted \(\Sigma \).

string: finite (including empty) sequence of symbols over an alphabet: abba is a string over \(\{a, b\} \). Convention: \(\varepsilon \) is the empty string, never an allowed symbol, \(\Sigma^* \) is set of all strings over \(\Sigma \).

language: Subset of \(\Sigma^* \) for some alphabet \(\Sigma \). Possibly empty, possibly infinite subset. E.g. \(\{\}\), \(\{aa, aaa, aaaa, \ldots\} \).

N.B.: \(\{\} \neq \{\varepsilon\} \).
Many problems can be reduced to languages: logical formulas, identifiers for compilation, natural language processing. Key question is recognition:

Given language L and string s, is $s \in L$?

Languages may be described either by descriptive generators (for example, regular expressions) or procedurally (e.g. finite state automata)
string length: denoted $|s|$, is the number of symbols in s, e.g. $|bba| = 3$.

$s = t$: if and only if $|s| = |t|$, and $s_i = t_i$ for $1 \leq i \leq |s|$.

s^R: reversal of s is obtained by reversing symbols of s, e.g. $1011^R = 1101$.

st or $s \circ t$: concatenation of s and t — all characters of s followed by all those of t, e.g. $bba \circ bb = bbabb$.

s^k: denotes s concatenated with itself k times. E.g., $ab^3 = ababab$, $101^0 = \varepsilon$.

Σ^n: all strings of length n over Σ, Σ^* denotes all strings over Σ.
language operations

\(\overline{L} \): Complement of \(L \), i.e. \(\Sigma^* - L \). If \(L \) is language of strings over \(\{0, 1\} \) that start with 0, then \(\overline{L} \) is the language of strings that begin with 1 plus the empty string.

\(L \cup L' \): union

\(L \cap L' \): intersection

\(L - L' \): difference

\(\text{Rev}(L) \): \(= \{ s^R : s \in L \} \)

concatenation: \(LL' \) or \(L \cdot L' = \{ rt \mid r \in L, t \in L' \} \). Special cases

\(L\{\epsilon\} = L = \{\epsilon\}L \), and \(L\{\} = \{\} = \{\}L \).
more language operations

exponentiation: L^k is concatenation of L k times. Special case, $L^0 = \{\epsilon\}$, including $L = \{\}\!$.

Kleene star: $L^* = L^0 \cup L^1 \cup L^2 \cup \ldots$.
states needed to classify a string
what state is a stingy vending machine in based on coins?
accepts only nickles (a), dimes (b), and quarters (c),
no change given, and everything costs 30 cents
useful toy (you’ll need JRE)

<table>
<thead>
<tr>
<th>δ</th>
<th>0</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>≥ 30</th>
</tr>
</thead>
<tbody>
<tr>
<td>n</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>≥ 30</td>
<td>≥ 30</td>
</tr>
<tr>
<td>d</td>
<td>10</td>
<td>15</td>
<td>20</td>
<td>25</td>
<td>≥ 30</td>
<td>≥ 30</td>
<td>≥ 30</td>
</tr>
<tr>
<td>q</td>
<td>25</td>
<td>≥ 30</td>
<td>≥ 30</td>
<td>≥ 30</td>
<td>≥ 30</td>
<td>≥ 30</td>
<td>≥ 30</td>
</tr>
</tbody>
</table>
build an automaton with formalities...

quintuple: \((Q, \Sigma, q_0, F, \delta)\)

- \(Q\) is set of states, \(\Sigma\) is finite, non-empty alphabet, \(q_0\) is start state
- \(F\) is set of accepting states, and \(\delta: Q \times \Sigma \mapsto Q\) is transition function

We can extend \(\delta: Q \times \Sigma \mapsto Q\) to a transition function that tells us what state a string \(s\) takes the automaton to:

\[
\delta^*(q, s) = \begin{cases}
q & \text{if } s = \varepsilon \\
\delta(\delta^*(q, s'), a) & \text{if } s' \in \Sigma^*, a \in \Sigma, s =
\end{cases}
\]

String \(s\) is accepted if and only if \(\delta^*(q_0, s) \in F\), it is rejected otherwise.
example — an odd machine

device a machine that accepts strings over \{a, b\} with an odd number of as

Formal proof requires inductive proof of invariant:

\[
\delta^*(E, s) = \begin{cases}
 E & \text{if } s \text{ has even number of } a \text{s} \\
 O & \text{if } s \text{ has odd number of } a \text{s}
\end{cases}
\]
float machine

$L_1 = \{0, \ldots, 9\}$

$L_2 = \{+, -\}, L_3 = \{.\}$

$L_F = \{ s \in L_2^j L_1^m L_3^k L_1^n \mid j, k \leq 1, m, n \geq 1 \}$

Devise a machine that accepts L_F
more odd/even

L is the language of binary strings
with an odd number of as, but even length
Devise a machine for L
notes