CSC165 winter 2013
Mathematical expression

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/165/W13/
416-978-5899

Course notes, chapter 3
non-boolean functions

notes
non-boolean functions

Take care when expressing a proof about a function that returns a non-boolean value, such as a number:

\[\lfloor x \rfloor \text{ is the largest integer } \leq x. \]

Now prove the following statement (notice that we quantify over \(x \in \mathbb{R} \), not \(\lfloor x \rfloor \in \mathbb{R} \)):

\[\forall x \in \mathbb{R}, \lfloor x \rfloor < x + 1 \]
You may have been disappointed that the last proof used only part of the definition of floor. Here’s a symbolic re-writing of the definition of floor:

\[\forall x \in \mathbb{R} \quad y = \lfloor x \rfloor \iff y \in \mathbb{Z} \land y \leq x \land (\forall z \in \mathbb{Z}, z \leq x \implies z \leq y) \]

The full version of the definition should prove useful to prove:

\[\forall x \in \mathbb{R}, \lfloor x \rfloor > x - 1 \]
proving something false

Define a sequence:

$$\forall n \in \mathbb{N} \quad a_n = \lfloor n/2 \rfloor$$

(of course, if you treat "/" as integer division, there’s no need to take the floor. Now consider the claim:

$$\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, j > i \Rightarrow a_j = a_i$$

The claim is false. Disprove it.
Sometimes your argument has to split to take into account possible properties of your generic element:

\[\forall n \in \mathbb{N}, n^2 + n \text{ is even} \]

A natural approach is to factor \(n^2 + n \) as \(n(n + 1) \), and then consider the case where \(n \) is odd, then the case where \(n \) is even.
proof about limits

In proving this claim you can’t control the value of ε or y, but you can craft δ to make things work out.

$$\forall \varepsilon \in \mathbb{R}^+, \exists \delta \in \mathbb{R}^+, \forall y \in \mathbb{R}, |y - \pi| < \delta \Rightarrow |y^2 - \pi^2| < \varepsilon$$

The claim is true. The proof format should be already familiar to you. A good approach is to fill in as much as possible, leaving the actual value of δ out until you have more intuition about it.
Suppose you have a predicate of the natural numbers:

$$\forall n \in \mathbb{N} \quad S(n) \iff \exists k \in \mathbb{N}, n = 7k + 3$$

Is $S(3 \times 3)$ true? How do you prove that? It’s useful to check out the remainder theorem from the sheet of mathematical prerequisites.
Be careful proving a claim false. Consider the claim, for some suitably defined X, Y and P, Q:

$$S : \quad \forall x \in X, \forall y \in Y, P(x, y) \Rightarrow Q(x, y)$$

To disprove S, should you prove:

$$\forall x \in X, \forall y \in Y, P(x, y) \Rightarrow \neg Q(x, y)$$

What about

$$\forall x \in X, \forall y \in Y, \neg (P(x, y) \Rightarrow Q(x, y))$$

Explain why, or why not.
Define $T(n)$ by:

$$\forall n \in \mathbb{N} \quad T(n) \iff \exists i \in \mathbb{N}, n = 7i + 1.$$

Take some scrap paper, don’t write your name on it, and fill in as much of the proof of the following claim as possible:

$$\forall n \in \mathbb{N}, T(n) \Rightarrow T(n^2)$$

Now fill in as much of the disproof of the following claim as possible:

$$\forall n \in \mathbb{N}, T(n^2) \Rightarrow T(n)$$