QUESTION 1. [10 marks]

Consider the definition of $U(n)$:

$$U(n) \iff \exists i \in \mathbb{N}, n = 6i + 3.$$

Use the definition to prove $\forall n \in \mathbb{N}, U(n) \Rightarrow U(n^2)$.

SAMPLE SOLUTION:

Assume n is a generic natural number. \# in order to introduce $\forall n$

Assume $U(n)$. \# antecedent

Then $\exists i' \in \mathbb{N}, n = 6i' + 3$. \# by definition of $U(n)$

Pick $i \in \mathbb{N}, n = 6i + 3$. \# since it exists

Then $n^2 = (6i + 3)^2 = 6(6i^2 + 6i + 1) + 3$ \# substitute i and expand

Then $\exists j \in \mathbb{N}, n^2 = 6j + 3$. \# $j = 6i^2 + 6i + 1 \in \mathbb{N}$, since $6, i, 1 \in \mathbb{N}$ and \mathbb{N} closed under $+$, \times.

Then $U(n^2)$. \# satisfies definition

Then $U(n) \Rightarrow U(n^2)$. \# introduced \Rightarrow

Then $\forall n \in \mathbb{N}, U(n) \Rightarrow U(n^2)$. \# introduced $\forall n$

QUESTION 2. [10 marks]

Consider the definition of the sequence a_n:

$$a_n = \begin{cases}
0, & \text{if } \exists i \in \mathbb{N}, n = 3i \\
1, & \text{if } \exists i \in \mathbb{N}, n = 3i + 1 \\
2, & \text{if } \exists i \in \mathbb{N}, n = 3i + 2
\end{cases}$$

Use the definition of a_n to DISPROVE $\exists m \in \mathbb{N}, \forall n \in \mathbb{N}, a_m \geq a_n$.

SAMPLE SOLUTION: To disprove the statement, I disprove its negation

$$\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, a_m \leq a_n$$

Assume $m \in \mathbb{N}$. \# in order to introduce $\forall m$

Pick $n = m$. Then $n \in \mathbb{N}$. \# since $m \in \mathbb{N}$

Then $a_n = a_m$. \# same indices

Then $a_n \leq a_m$. \# \leq includes $=$

Then $\exists n \in \mathbb{N}, a_n \leq a_m$. \# previous line

Then $\forall m \in \mathbb{N}, \exists n \in \mathbb{N}, a_n \leq a_m$. \# introduced $\forall m$

REMARK: I inadvertently made this question slightly easier than I intended. Choose $n = m + 3$ or $n = 2$ would also work fine.
QUESTION 3. [10 marks]

Consider the definition of \([x] \):

\[
y = [x] \iff y \in \mathbb{Z} \land y \leq x \land (\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq y)
\]

Use the definition to prove \(\forall x \in \mathbb{R}^+, [3x] \geq [x] \).

SAMPLE SOLUTION:

Assume \(x \in \mathbb{R}^+ \). # in order to introduce \(\forall x \).

Then \(x \leq 3x \). # multiply 1 \(\leq 3 \) by positive \(x \)
Then \([x] \leq x \). # definition of \([x] \)
Then \([x] \leq 3x \). # transitivity of \(\leq \)
Then \([x] \in \mathbb{Z} \). # definition of \([x] \).
Then \([x] \leq [3x] \).

Since any integer no greater than \(3x \) is no greater than \([3x] \), by the definition of \([3x] \).

Then \(\forall x \in \mathbb{R}^+, [x] \leq [3x] \). # introduced \(\forall x \).