sort strategies

Which algorithm do you use to sort a 5-card euchre hand?

- insertion sort
- selection sort
- some other sort?

If you use one of the first two, the number of “steps” you execute will more than quadruple if you graduate from euchre to a 13-card bridge hand.

If you were enough of a virtuoso to use mergesort or quicksort on your cards, the change from euchre to bridge would roughly double your work.

We are most interested in how quickly running-time grows with the size of the problem, since these quickly swamp constant-factor differences between algorithms that are of the same “order.”
different, but the same

Suppose you could count the “steps” required by an algorithm in some sort of platform-independent way. You would find that the steps required for insertion sort and selection sort on lists of size \(n \) were no more than some quadratic functions of \(n \):

\[
g(n) = n^2 \quad f(n) = 3n^2 + 50 \quad h(n) = 15n^2 + n
\]

To a computer scientists, even though they may vary by substantial constant factors, all quadratic functions are the “same” — they are in \(\mathcal{O}(n^2) \).
big-Oh of n^2

We know, or have heard, that all quadratic functions grow at “roughly” the same speed. Here’s how we make “roughly” explicit.

$$\mathcal{O}(n^2) = \{ f : \mathbb{N} \mapsto \mathbb{R}^+ \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq cn^2 \}$$

Those are a lot of symbols to process. They say that $\mathcal{O}(n^2)$ is a set of functions that take natural numbers as input and produce non-negative real numbers as output. An additional property of these functions is that for each of them you can find a multiplier c, and a breakpoint B, so that if you go far enough to the right (beyond B) the function is bounded above by cn^2.

In terms of limits, this says that as n approaches infinity, $f(n)$ is no bigger than cn^2 (once you find the appropriate c).
Prove $3n^2 + 2n \in \mathcal{O}(n^2)$
scratch
Special case?

Was the first big-Oh exercise a special case? What happens to the argument if you add a constant:

\[3n^2 + 2n + 5 \in O(n^2) \]

See what needs to be modified in the proof to accommodate the constant 5.
in general, $\mathcal{O}(g)$:

$$\mathcal{O}(g) = \{ f : \mathbb{N} \mapsto \mathbb{R}^\geq \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq cg(n) \}$$

Prove:

$$7n^6 - 5n^4 + 2n^3 \in \mathcal{O}(6n^8 - 4n^5 + n^2)$$
scratch
how to prove $n^3 \not\in \mathcal{O}(3n^2)$?
scratch
non-polynomials

Big-oh statements about polynomials are pretty easy to prove: $f \in O(g)$ exactly when the highest-degree term of g is no smaller than the highest-degree term of f.

What about functions such as $\log(n)$ or 3^n? Logarithmic functions are in big-Oh of ANY polynomial, whereas exponential functions (with a base bigger than 1) are not in big-Oh of any polynomial. How do you prove such things?
the long way

Without the techniques of calculus, you could prove that \(2^n \not\in \mathcal{O}(n^2)\). The key idea is that you’d have to show that for ANY given \(c\), you could find an \(n\) so that \(2^n > cn^2\).

To make this work nicely, it would be nice to have a piece of \(n\) to overwhelm any multiplier \(c\) that could be thrown at us in the form of \(cn^2\).

For example, it would be convenient if \(2^n\) were greater than \(n^3 = nn^2\). This certainly isn’t true for all \(n\), but is it true “eventually”?

Exercise: find natural number \(k\) so that you can prove that for all natural numbers greater than \(k\), \(2^n > n^3\).
Prove $2^n \not\in n^2$.
scratch
the short cut

Do you know anything about the ratio $2^n/n^2$, as n gets very large? How do you evaluate:

$$\lim_{n \to \infty} \frac{2^n}{n^2}$$

If the limit evaluates to ∞, then that’s the same as saying:

$$\forall c \in \mathbb{R}^+, \exists n' \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq n' \Rightarrow \frac{2^n}{n^2} > c$$

Once your enemy hands you a c, you can choose an n' with the required property.
Prove $2^n \not\in n^2$.
(using l’Hôpital’s rule and limits)
scratch