CSC 165
more proof
Danny Heap
heap@cs.toronto.edu
http://www.cdf.toronto.edu/~heap/165/W10/

\[
\begin{align*}
\text{AT} & \rightarrow \text{tomorrow} \\
\text{T1} & \rightarrow \text{(later) tonight}
\end{align*}
\]
proving existence

To prove the a set is non-empty, it’s enough to exhibit one element. How do you prove:

$$\exists x \in \mathbb{R}, x^3 + 3x^2 - 4x = 12$$

Set $$x = 2$$. Then $$x \in \mathbb{R} \neq 2 \in \mathbb{R}$$ is well-known.

Then $$x^3 + 3x^2 - 4x = 2^3 + 3 \cdot 2^2 - 4 \cdot 2$$ # sub $$x = 2$$

$$= 8 + 12 - 8$$ # algebra

$$= 12$$

Conclude $$\exists x \in \mathbb{R}, x^3 + 3x^2 - 4x = 12$$ # introduced $$\exists$$
prove a claim about a sequence

Define sequence \(a_n \) by:

\[
\forall n \in \mathbb{N} \quad a_n = n^2
\]

Now prove:

\[
\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i
\]

Let \(i = 2 \). Then \(i \in \mathbb{N} \) and \(2 \in \mathbb{N} \).

Assume \(j \in \mathbb{N} \) is arbitrary, generic.

Assume \(a_j \leq i \) and assumption on \(i \).

Then \(j^2 \leq i = 2 \) defines \(a_j \), and assumption on \(i \).

Then \(j \leq \sqrt{2} \) since \(\sqrt{ } \) is monotonic.

\(j < 2 \) since \(\sqrt{2} < 2 \).

Then \(j < 2 \) and consequent follows from assumption.

Then \(j \leq i \) and introduced.

Then \(\forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \) and introduced.

Conclude \(\exists i \in \mathbb{N}, \forall j \in \mathbb{N}, a_j \leq i \Rightarrow j < i \) and introduced.
infinitely many primes

Define the prime natural numbers as \(P = \{ p \in \mathbb{N} \mid p \) has exactly two distinct divisors in \(\mathbb{N} \} \).

How do you prove:

\[S : \forall n \in \mathbb{N}, |P| > n \quad \neg S \quad \exists n \in \mathbb{N}, |P| \leq n \]

It would be nice to have some result \(R \) that leads to \(S \). If you could show \(R \Rightarrow S \), and that \(R \) is true, then you'd be done. But, out of many elementary results, how do you choose an \(R \)?

Contradiction will often lead you there.

\(F_1 \land F_2 \land F_3 \land \ldots \land F_n \Rightarrow S \)

\(\neg S \Rightarrow \neg F_1 \lor \neg F_2 \lor \neg F_3 \lor \ldots \lor \neg F_n \)
Proof

Assume $\exists n \in \mathbb{N}, \mid p \mid \leq n$

Then $\exists k \in \mathbb{N}, \mid p \mid = n$ # assumption.

Then $p = \sqrt[3]{p_0 \cdot p_1 \cdots p_{k-1}}$

Let $r = p_0 \cdot p_1 \cdots p_{k-1} \in \mathbb{N}$ # \mathbb{N} closed under $*$

Then $r \geq 6$ # since $2, 3 \in p$ and all other factors ≥ 1

Then $r+1 > 1$ # $r \geq 6$

Then $\exists p \in p$, $p \mid r+1$ # every nat num >1 has prime divisor

Also $p \mid r$ # since p is one of the factors $p_0 \cdots p_{k-1}$

Then $p \mid (r - (r+1))$ # divide 2 ints \Rightarrow divide difference

So $p \mid 1 \Rightarrow p = 1$ # only divisor of 1

contradiction! $1 \notin p$

Conclude S # since assuming $\exists n$ leads to $\rightarrow \leftarrow$ contradiction.
Take care when expressing a proof about a function that returns a non-boolean value, such as a number:

\[[x] \text{ is the largest integer } \leq x. \]

Now prove the following statement (notice that we quantify over \(x \in \mathbb{R} \), not \([x] \in \mathbb{R} \):

\[\forall x \in \mathbb{R}, [x] < x + 1 \]

Assume \(x \in \mathbb{R} \) is arbitrary real.

Then \([x] \leq x \) # from definition

Then \([x] < x + 1 \) # add \(x \) to both sides of \(0 < 1 \)

Then \([x] < x + 1 \) # transitivity

Conclude \(\forall x \in \mathbb{R}, [x] < x + 1 \)
You may have been disappointed that the last proof used only part of the definition of floor. Here's a symbolic re-writing of the definition of floor:

\[
\forall x \in \mathbb{R}, \ y = \lfloor x \rfloor \iff y \in \mathbb{Z} \land y \leq x \land (\forall z \in \mathbb{Z}, z \leq x \Rightarrow z \leq y)
\]

The full version of the definition should prove useful to prove:

\[
\forall x \in \mathbb{R}, \lfloor x \rfloor > x - 1
\]

Assume \(x \in \mathbb{R} \) # generic

Let \(y = \lfloor x \rfloor \) # into a variable

Then \(y \in \mathbb{Z} \) # from defn.

Then \(y \leq x \) #

Then \(y + 1 \in \mathbb{Z} \) # \(y \in \mathbb{Z} \land \mathbb{Z} \) closed under +

Then \(y + 1 > y \) # add 1 to both sides \(\Downarrow \)

So \(y + 1 > x \) # contrapositive of 3rd clause of defn

So \(y > x - 1 \) # move 1 \(\Rightarrow \)

So \(\lfloor x \rfloor > x - 1 \) #

Conclude \(\forall x \in \mathbb{R}, \lfloor x \rfloor > x - 1 \)
scratch
Define a sequence:

\[\forall n \in \mathbb{N} \quad a_n = \lfloor n/2 \rfloor \]

(of course, if you treat "/" as integer division, there's no need to take the floor. Now consider the claim:

\[\neg \left(\exists i \in \mathbb{N} , \forall j \in \mathbb{N} , j > i \Rightarrow a_j = a_i \right) \]

The claim is false. Disprove it.
Prove \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \).

Assume \(i \in \mathbb{N} \) generic. Set \(j = i + 2 \). Then \(j \in \mathbb{N} \neq i, 2 \in \mathbb{N} \), and \(\mathbb{N} \) closed under addition.

Then \(j = i + 2 > i \) add \(i \) to both sides \(j \geq 2 > 0 \).

Then \(a_j = \left\lfloor \frac{j}{2} \right\rfloor = \left\lfloor \frac{i + 2}{2} \right\rfloor = \left\lfloor \frac{i}{2} + 1 \right\rfloor > \left\lfloor \frac{i}{2} \right\rfloor \).

\(\neq \) since \(\left\lfloor \frac{i}{2} + 1 \right\rfloor > \frac{i}{2} \neq \) since \(\left\lfloor x \right\rfloor > x - 1 \)

\(\geq \left\lfloor \frac{i}{2} \right\rfloor \neq \) def \(\lfloor \cdot \rfloor \)

Then \(j > i \land a_j \neq a_i \) show both.

Then \(\exists j \in \mathbb{N}, j > i \land a_j \neq a_i \) introduced \(\exists \).

Conclude \(\forall i \in \mathbb{N}, \exists j \in \mathbb{N}, j > i \land a_j \neq a_i \) introduced \(\forall \).
cases

Sometimes your argument has to split to take into account possible properties of your generic element:

\[\forall n \in \mathbb{N}, n^2 + n \text{ is odd} \]

A natural approach is to factor \(n^2 + n \) as \(n(n + 1) \), and then consider the case where \(n \) is odd, then the case where \(n \) is even.

Case 1 Assume \(\exists k \in \mathbb{N}, n = 2k \)

- Pick \(k \in \mathbb{N}, n = 2k \) \(\# \) since it exists.
- Then \(n^2 + n = n(n + 1) = 2k(2k + 1) \) \(\# \) sub \(n = 2k \).
- Then \(\exists j \in \mathbb{N}, n^2 + n = 2j \) \(\# j = 2k(2k + 1) \in \mathbb{N} \) \(\# \) \(2, k, 1 \in \mathbb{N} \) and \(\mathbb{N} \) closed under +.

Case 2 Assume \(\exists k \in \mathbb{N}, n = 2k + 1 \)

- Pick \(k \in \mathbb{N}, n = 2k + 1 \) \(\# \) since it exists.
- Then \(n^2 + n = n(n + 1) = (2k + 1)(2k + 2) \) \(\# \) algebra
 \[= 2(2k + 1)(k + 1) \in \mathbb{N}, 2, k, 1 \in \mathbb{N} \]
- Then \(\exists j \in \mathbb{N}, n^2 + n = 2j \) \(\# j \)
- Then \(\exists j \in \mathbb{N}, n^2 + n = 2j \) \(\# j \) true in both possible cases.

Conclude \(\forall n \in \mathbb{N}, n^2 + n \) is even \(\# \) introduced +
Assume \(j \geq i = 2 \)
Then \(j - 2 \geq 0 \)
Then \(j^2 - 2j \geq 0 \)
Then \(j^2 \geq 4 > 2 \)

\[
\begin{align*}
 j & \geq 2 \\
 j^2 & \geq 4 \\
\end{align*}
\]

mult by \(j \)

\[
\begin{align*}
 j^2 + 2j & \geq 2j + 4 \\
\end{align*}
\]

mult by \(j + 2 \)