bounded below

Notice that the definition of big-Omega differs in just one character from big-Oh:
\[\Omega(g) = \{ f : \mathbb{N} \rightarrow \mathbb{R}_{\geq 0} \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \geq cg(n) \} \]

The rôle of \(B \) is, as with big-Oh, to act as a breakpoint, so comparisons don’t have to start at the origin.

The rôle of \(c \) is to scale \(g \) down below \(f \).

If you’re proving \(f \in \Omega(g) \), you get to choose \(c \) and \(B \) to suit your proof. Notice that it would be really unfair to allow \(c \) to be zero.
one last bound

It often happens that functions are bounded above \textit{and} below by the same function. In other words, \(f \in \mathcal{O}(g) \land f \in \Omega(g) \). We combine these two concepts into \(f \in \Theta(g) \).

\[
\Theta(g) = \{ f : \mathbb{N} \rightarrow \mathbb{R}^{\geq 0} \mid \exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_1 g(n) \leq f(n) \leq c_2 g(n) \}
\]

You might want to draw pictures, and conjecture about appropriate values of \(c_1, c_2, B \) for \(f = 5n^2 + 15 \) and \(g = n^2 \).
How do you deal with a general statement about two functions:

\[(f \in O(g) \land g \in O(h)) \Rightarrow f \in O(h)\]
scratch
How about: $f \in \mathcal{O}(g) \Rightarrow g \in \Omega(f)$
scratch
Prove or disprove: \(f \in \Theta(g) \Rightarrow f \cdot f \in \Theta(g \cdot g) \).

Assume \(f \in \Theta(g) \).

Then \(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq c \cdot g(n) \).

Pick \(c_1 \in \mathbb{R}^+, B_1 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B_1 \Rightarrow f(n) \leq c_1 \cdot g(n) \).

Pick \(c = \frac{c_1^2}{c} \). Then \(c \in \mathbb{R}^+ \).

Assume \(n \in \mathbb{N} \).

Assume \(n \geq B \).

Then \((f \cdot f)(n) = f(n) \cdot f(n) \leq f(n) \cdot c_1 \cdot g(n) \leq f(n) \cdot c_1 \cdot g(n) \leq c_1 \cdot f(n) \leq c_1 \cdot f(n) \cdot g(n) \).

\[\leq c \cdot g(n) \cdot g(n) \leq c \cdot g(n) \cdot g(n) \leq c \cdot g(n) \cdot g(n) = c(g \cdot g)(n) \leq c(g \cdot g)(n) \]

Then \(\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow (f \cdot f)(n) \leq c(g \cdot g)(n) \).

Then \(f \cdot f \in \Theta(g \cdot g) \).

Thus, \(f \cdot f \in \Theta(g \cdot g) \).

\text{slide 8}
scratch
Prove or disprove: \((f \in O(h) \land g \in O(h)) \implies (f + g) \in O(h)\).

Assume \(f \in O(h) \land g \in O(h)\) \# antecedent.

Then \(\exists c \in \mathbb{R}^+ \land \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \implies f(n) \leq c_1 h(n)\).

Pick \(c_1 \in \mathbb{R}^+, B_1 \in \mathbb{N}\), \(\forall n \in \mathbb{N}, n \geq B_1 \implies f(n) \leq c_1 h(n)\).

Then \(\exists c \in \mathbb{R}^+ \land \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B_2 \implies g(n) \leq c_2 h(n)\).

Pick \(c_2 \in \mathbb{R}^+, B_2 \in \mathbb{N}\), \(\forall n \in \mathbb{N}, n \geq B_2 \implies g(n) \leq c_2 h(n)\).

Pick \(c = \frac{c_1 + c_2}{\max(B_1, B_2)}\) \# Then \(B \in \mathbb{N}\).

Assume \(n \in \mathbb{N}\) \# general.

Assume \(n \geq B\) \# antecedent.

Then \((f + g)(n) = f(n) + g(n) \leq c_1 h(n) + c_2 h(n) \# \text{by assumptions}\)

\leq (c_1 + c_2) h(n) \# \text{since } n \geq B_1, B_2

= (c_1 + c_2) h(n) \# c = c_1 + c_2

= c h(n) \# \text{then follow some sort of conclusion as 2 slide previous.}
scratch
Prove or disprove: \(f \in O(g) \Rightarrow f \in O(g \cdot g) \)

Pick \(f = g = \frac{1}{n+1} \). Then \(f, g \in f \cdot \frac{1}{n+1} \rightarrow (0, 1) \forall n \in \mathbb{N} \).

Then \(f \in O(g) \) is easy to prove, \(c = 1, b = 0 \) will work.

Assume \(c \in \mathbb{R}^+, b \in \mathbb{N} \) is generic, \(c \) is real, natural number.

Pick \(n = \frac{c+1}{cB} \). Then \(n \in \mathbb{N} \land n \geq B \).

Then \(f(n) = \frac{1}{n+1} \)

\[= \frac{n+1}{(n+1)^2} \quad \text{# mult by } \frac{n+1}{n+1} \]

\[> \frac{c+1}{(n+1)^2} \quad \# n \geq c \]

\[> \frac{c}{(n+1)^2} \quad \# \frac{c+1}{c} \geq c, \quad \# \text{so } \frac{c+1}{c} \geq c \]

\[= c \cdot (g \cdot g)(n) \]

Then \(\exists n \in \mathbb{N}, n \geq B \land f(n) > c(g \cdot g)(n) \) \# introduced \(\exists \)

Then \(\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, n \geq B \land f(n) > c(g \cdot g)(n) \) \# introductory axiom.

Then \(f \not\in O(g \cdot g) \) \# violates definition.

Then \(\exists f, g \in f, f \in O(g) \land f \not\in O(g \cdot g) \).
scratch
counting costs

want a coarse comparison of algorithms “speed” that ignores hardware, programmer virtuosity

which speed do we care about: best, worst, average? why?

define idealized “step” that doesn’t depend on particular hardware and idealized “time” that counts the number of steps for a given input.
linear search

```python
def LS(A, x):
    """ Return index i such that x == L[i]. Otherwise, return -1 """
    i = 0
    while i < len(A):
        if A[i] == x:
            return i
        i = i + 1
    return -1
```

Trace LS([2, 4, 6, 8], 4), and count the time complexity $t_{LS}([2, 4, 6, 8], 4) = 7$ if $3j + 3/2 < 4$

What is $t_{LS}(A, x)$, if the first index where x is found is j?

What is $t_{LS}(A, x)$ is x isn’t in A at all?

slide 15
worst case

denote the worst-case complexity for program P with input $x \in I$, where the input size of x is n as

$$W_P(n) = \max \{ t_P(x) \mid x \in I \land \text{size}(x) = n \}$$

The upper bound $W_P \in \Theta(U)$ means

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \max \{ t_P(x) \mid x \in I \land \text{size}(x) = n \} \leq cU(n)$$

That is:

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall x \in I, \text{size}(x) \geq B \Rightarrow t_P(x) \leq cU(\text{size}(x))$$

The lower bound $W_P \in \Omega(L)$ means

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \max \{ t_P(x) \mid x \in I \land \text{size}(x) = n \} \geq c\Omega(n)$$

That is:

$$\exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow \exists x \in I, \text{size}(x) = n \land t_P(x) \geq cL(n)$$
def IS(A):
 """IS(A) sorts the elements of A in non-decreasing order """
 i = 1
 while i < len(A):
 t = A[i]
 j = i
 while j > 0 and A[j-1] > t:
 j = j-1
 A[j] = t
 i = i+1

I want to prove that $W_{IS} \in \mathcal{O}(n^2)$.

$\exists c \in \mathcal{R}^1, \exists B \in \mathbb{N}, \forall x \in I, \; \text{size}(x) \geq B \Rightarrow t_{IS}(x) \leq c \cdot n^2$
Pick \(c = 1 \) Then \(c \in \mathbb{R}^+ \)

Pick \(B = 1 \) Then \(B \in \mathbb{N} \).

Assume \(x \) is an array and \(\text{len}(x) = n \geq B \).

For Lines 5, 6, 7 execute once as \(i \) decrements
from \(1 \) to \(? \) \(1 \) \((+1 \text{ loop condition})\)

yield \(3i+1 \) steps \(\leq 3n+1 \) steps

for each \(i \).

Then \(i \) takes values \(1, \ldots, n-1 \), yielding
an addition each of \(2, 3, 4, 8, 9 \) each
times, hence \((n-1)(5+(3n+1)) + 1 + 1 \)

\(\leq n (4 + 3n) + 1 = 3 n^2 + 6n + 2 \)

\(\leq 11n^2 \quad \# \quad n \geq 1, n \geq 1 \)

\(= cn^2 \quad \# \quad 11 = c \)
scratch
$h(n+1) \over 2$

$1 + \cdots + n - 1$

$\chi = [n-1, n-2, \ldots, 0]$

$1 + \cdots + n$

scratch
scratch