QUESTION 1. [10 marks]
Recall these python functions from lecture:

\[
\begin{align*}
\text{def quant1(L1, L2) : return False in } [x \text{ in L2 for } x \text{ in L1}] \\
\text{def quant2(L1, L2) : return True in } [x \text{ in L2 for } x \text{ in L1}] \\
\text{def quant3(L1, L2) : return False not in } [x \text{ in L2 for } x \text{ in L1}] \\
\text{def quant4(L1, L2) : return True not in } [x \text{ in L2 for } x \text{ in L1}]
\end{align*}
\]

PART (A) [4 marks]
Write the name of each function above beside the comment(s) that best describes the condition for which the function returns True.

1. \(\forall x \in L1, x \in L2 \) Solution: quant3
2. \(\exists x \in L1, x \in L2 \) Solution: quant2
3. \(\forall x \in L1, x \notin L2 \) Solution: quant4
4. \(\exists x \in L1, x \notin L2 \) Solution: quant1

PART (B) [6 marks]
For each output (i)–(vi), either devise lists \(L1 \) and \(L2 \) so that the python expression

\[
[\text{quant1}(L1,L2), \text{quant2}(L1,L2), \text{quant3}(L1,L2), \text{quant4}(L1,L2)]
\]

evaluates to that output, or else explain why it is impossible to devise such lists.

(i) \([T,T,F,F]\) Solution: \(L1 = [0,1], L2 = [0] \)

(ii) \([T,F,T,F]\) Solution: Not possible, since \(q1(L1,L2) = \neg q3(L1,L2) \)

(iii) \([T,F,F,T]\) Solution: \(L1 = [0], L2 = [] \)

(iv) \([F,T,T,F]\) Solution: \(L1 = [0], L2 = [0] \)

(v) \([F,T,F,T]\) Solution: Not possible, since \(q1(L1,L2) = \neg q3(L1,L2) \)

(vi) \([F,F,T,T]\) Solution: \(L1 = [], L2 = [] \)
Question 2. [12 marks]

Part (A) [8 marks]

Consider the claim:

\[\forall x \in U, (P(x) \lor Q(x)) \Rightarrow R(x) \]

...where \(P(x) \) means \(x \in P \), \(Q(x) \) means \(x \in Q \), and \(R(x) \) means \(x \in R \). Write an F in the regions of the Venn diagram below that would provide a counterexample to the claim if they were occupied. You earn one mark for each correctly placed F, and one mark for each correctly omitted F.

![Venn Diagram](image)

Solution: Write an F in each region of \(P \cup Q \) that is outside \(R \). These three Fs correspond to counterexamples that satisfy \((P(x) \lor Q(x)) \land \neg R(x) \)

Part (B) [4 marks]

Devise elements of set \(U \) and meaning of predicates \(P(x) \) and \(Q(x) \) where \(S1 \) is false but \(S2 \) is true. Then devise elements of set \(U \) and meaning of predicates \(P(x) \) and \(Q(x) \) where \(S1 \) is true but \(S2 \) is false:

\[
S1: \quad \forall x \in U, P(x) \Rightarrow Q(x) \\
S2: \quad \exists x \in U, P(x) \Rightarrow Q(x)
\]

Solution: Example # 1: \(U = \{0,1\} \quad P(x) : x > 0 \quad Q(x) : x > 1 \)

Example # 2: \(U = 0 \quad P(x) : x > 0 \quad Q(x) : x > 1 \)
QUESTION 3. [10 marks]

Define set H as the set of humans, and predicates $P(h)$ as "h is part of the problem," $S(h)$ as "h is part of the solution." For each English statement below, rewrite the statement and its negation in symbolic form, where the \neg symbol, if it is used, is as close as possible to the predicates as possible. For each symbolic statement below, rewrite the statement and its negation in English.

PART (A) [2 marks]

Some humans are part of the solution provided they are not part of the problem.

Solution: rewrite: $\exists h \in H, \neg P(h) \Rightarrow S(h)$, negation: $\forall h \in H, \neg P(h) \land \neg S(h)$

PART (B) [2 marks]

$\forall h \in H, \neg P(h) \land S(h)$.

Solution: rewrite: Every human is not part of the problem and is part of the solution. negation: Some human is part of the problem if they are part of the solution.

PART (C) [2 marks]

Each human is not part of the solution unless they are not part of the problem.

Solution: rewrite: $\forall h \in H, P(h) \Rightarrow \neg S(h)$ negation: $\exists h \in H, P(h) \land S(h)$

PART (D) [2 marks]

$\exists h_1 \in H, \exists h_2 \in H, P(h_1) \land S(h_2)$.

Solution: rewrite: There's somebody who is part of the problem, and there's somebody who is part of the solution. negation: If anybody is part of the problem, then nobody is part of the solution.

PART (E) [2 marks]

Any human being is part of the solution only if they are not being part of the problem.

Solution: rewrite: $\forall h \in H, S(h) \Rightarrow \neg P(h)$ negation: $\exists h \in H, S(h) \land P(h)$
QUESTION 4. [6 marks]

Define C as the set of courses at U of T, S as the set of students at U of T, and $E(s,c)$ as student s is enrolled in course c. For each pair of statements below, explain either why they are equivalent, or give an example that shows they are different.

Part (a) [2 marks]

$(S1) \ \ \ \ \forall c \in C, \exists s \in S, E(s,c)$

$(S2) \ \ \ \ \forall s \in S, \exists c \in C, E(s,c)$

Solution: They aren't equivalent. If all students were enrolled in some course or another, but one course had nobody enrolled, then $(S1)$ would be false, whereas $(S2)$ would be true.

Part (b) [2 marks]

$(S3) \ \ \ \ \exists s \in S, \forall c \in C, E(s,c)$

$(S1) \ \ \ \ \forall c \in C, \exists s \in S, E(s,c)$

Solution: They aren't equivalent. If every course has at least one student enrolled, but no student is enrolled in all courses, then $(S1)$ is true whereas $(S3)$ is false.

Part (c) [2 marks]

$(S4) \ \ \ \ \exists s \in S, \exists c \in C, E(s,c)$

$(S5) \ \ \ \ \exists c \in C, \exists s \in S, E(s,c)$

Solution: They are equivalent — they both say that there is at least one student enrolled in at least one course.
This page is left (nearly) blank to accommodate work that wouldn't fit elsewhere.