Learning Objectives

By the end of this worksheet, you will:

- Prove and disprove statements using the definition of Big-Oh.
- Investigate properties of Big-Oh of some common functions.

Note: in Big-Oh expressions, it will be convenient to just write down the “body” of the functions rather than defining named functions all the time. We’ll always use the variable \(n \) to represent the function input, and so when we write “\(n \in \mathcal{O}(n^2) \),” we really mean “the functions defined as \(f(n) = n \) and \(g(n) = n^2 \) satisfy \(f \in \mathcal{O}(g) \).”

As a reminder, here is the formal definition of what “\(g \) is Big-Oh of \(f \)” means:

\[
g \in \mathcal{O}(f) : \exists c, n_0 \in \mathbb{R}^+, \forall n \in \mathbb{N}, n \geq n_0 \Rightarrow g(n) \leq cf(n)
\]

1. **Comparing polynomials.** Our first step in comparing different types of functions is looking at different powers of \(n \). Consider the following statement, which generalizes the idea that \(n \in \mathcal{O}(n^2) \):

\[
\forall a, b \in \mathbb{R}^+, \ a \leq b \Rightarrow n^a \in \mathcal{O}(n^b)
\]

(a) Rewrite the above statement, but with the definition of Big-Oh expanded.

(b) Prove the above statement. **Hint:** you can actually pick \(c \) and \(n_0 \) to both be 1, and have the proof work.
2. **Comparing logarithms.** One slight oddness about the definition of Big-Oh is that it treats all logarithmic functions “the same.” Your task in this question is to investigate this, by proving the following statement:

\[
\forall a, b \in \mathbb{R}^+, \ a > 1 \land b > 1 \Rightarrow \log_a n \in O(\log_b n)
\]

We won’t ask you to expand the definition of Big-Oh, but if you aren’t quite sure, then we highly recommend doing so before attempting even your rough work!

Hint: look up the “change of base rule” for logarithms, if you don’t quite remember it!
3. **Sum of functions.** Now let's look at one of the most important properties of Big-Oh: how it behaves when adding functions together. Let \(f, g : \mathbb{N} \to \mathbb{R}^{\geq 0} \) (i.e., \(f \) and \(g \) are two functions that take natural numbers and return non-negative real numbers). We can define the sum of \(f \) and \(g \) as the function \(f + g : \mathbb{N} \to \mathbb{R}^{\geq 0} \) such that

\[
\forall n \in \mathbb{N}, \ (f + g)(n) = f(n) + g(n).
\]

For example, if \(f(n) = 2n \) and \(g(n) = n^2 + 3 \), then \((f + g)(n) = 2n + n^2 + 3 \).

Consider the following statement:

\[
\forall f, g : \mathbb{N} \to \mathbb{R}^{\geq 0}, \ g \in \mathcal{O}(f) \Rightarrow f + g \in \mathcal{O}(f)
\]

In other words, if \(g \) is Big-Oh of \(f \), then \(f + g \) is no bigger than just \(f \) itself, asymptotically speaking.\(^1\)

Your task for this question is to prove this statement. Keep in mind this is an implication: you're going to assume that \(g \in \mathcal{O}(f) \), and you want to prove that \(f + g \in \mathcal{O}(f) \). It will likely be helpful to write out the full statement (with the definition of Big-Oh expanded), and use subscripts to help keep track of the variables.

\(^1\) This statement is quite similar to ones about divisibility, and in particular Question 1 on Problem Set 2.