Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,
and read the instructions below.)
Question 1. [22 marks]

Consider the following python functions and definitions, where S, S1 are sets and P, P1–P4 are boolean functions. Note: feel free to ask about how python works, since you are being tested on logic, not programming.

```python
def q0(S, P):
    return all({P(x) for x in S})

def q1(S, P):
    return any({P(x) for x in S})

def q2(S, P):
    return not any({P(x) for x in S})

def q3(S, P):
    return not all({P(x) for x in S})
S1 = {0, 1, 2, 3, 4, 5}
def P1(x):
    return x > 2
def P2(x):
    return x > 3
def P3(x):
    return (not P2(x)) or P1(x)
def P4(x):
    return P1(x) and P2(x)
```

Part (a) [6 marks]

Write the name of each function q0–q3 beside the comment(s) below that best describes the condition for which the function returns True. Indicate which are negations of each other.

1. \(\forall x \in S, P(x) \) q0
2. \(\exists x \in S, P(x) \) q1
 negation
3. \(\forall x \in S, \neg P(x) \) q2
4. \(\exists x \in S, \neg P(x) \) q3
Part (b) [16 marks]

Use your answer for the previous part to predict what the output is below. For each answer, briefly explain your thinking.

1. \(q_0(S_1, P_2) \) \(\neg \text{False} \)
 \(\forall x \in S_1, \neg (x > 3) \) — 0, 1, 2, 3 are counterexamples

2. \(q_1(S_1, P_1) \) \(\text{True} \)
 \(\exists x \in S_1, x > 2 \) — 3, 4, 5 are examples.

3. \(q_2(S_1, P_2) \) \(\neg \text{False} \)
 \(\forall x \in S_1, \neg (x > 3) \) — 4, 5 are counterexamples

4. \(q_3(S_1, P_1) \) \(\text{True} \)
 \(\exists x \in S_1, x > 2 \) — 0, 1, 2 are examples.

5. \(q_0(S_1, P_3) \) \(\text{True} \)
 \(\forall x \in S_1, \neg (x > 3) \lor (x > 2) \) — no counterexamples, since any number is either \(\leq 3 \) or \(> 2 \), or both.

6. \(q_1(S_1, P_3) \) \(\text{True} \)
 \(\exists x \in S_1, \neg (x > 3) \lor (x > 2) \) — every element of \(S_1 \) is an example.

7. \(q_2(S_1, P_4) \) \(\text{False} \)
 \(\forall x \in S_1, \neg (x > 2 \land x > 3) \) — 4, 5 are counterexamples.

8. \(q_3(S_1, P_4) \) \(\text{True} \)
 \(\exists x \in S_1, \neg (x > 2 \land x > 3) \) — 0, 1, 2, 3 are examples.
Question 2. [10 marks]

Part (a) [5 marks]
Consider the following symbolic statement:

\[S_1 : \forall m \in \mathbb{N}, \forall n \in \mathbb{N}, \exists q \in \mathbb{N}, m + n = q \]

1. Write the negation of the symbolic statement \(S_1 \), in such a way that the negation symbol \(\neg \) applies only to predicates such as \(m + n = q \).

\[\exists m \in \mathbb{N}, \exists n \in \mathbb{N}, \forall q \in \mathbb{N}, \neg (m + n = q) \]

2. Which is true, statement \(S_1 \) or its negation? Briefly explain your reasoning.

\(S_1 \) is true.

For any \(m, n \in \mathbb{N} \), choose \(q = m + n \in \mathbb{N} \).

Part (b) [5 marks]

Now consider the symbolic statement:

\[S_2 : \exists q \in \mathbb{N}, \forall m \in \mathbb{N}, \forall n \in \mathbb{N}, m + n = q \]

1. Write the negation of the symbolic statement \(S_2 \), in such a way that the negation symbol \(\neg \) applies only to predicates such as \(m + n = q \).

\[\forall q \in \mathbb{N}, \exists m \in \mathbb{N}, \exists n \in \mathbb{N}, \neg (m + n = q) \]

2. Which is true, statement \(S_2 \) or its negation? Briefly explain your reasoning.

\(\neg S_2 \) is true

For any \(q > 0 \), pick \(m = n = 0 \). If \(q = 0 \), pick \(m = n = 1 \).
Question 3. [6 marks]

Come up with an example of sets D, P, and Q so that one of statements S_3, S_4 is true, and the other is false. Explain which is true, which false, and why.

Interpret $P(x)$ as $x \in P$, $Q(x)$ as $x \in Q$, and $D(x)$ as $x \in D$.

S_3: $\exists x \in D, P(x) \leftrightarrow Q(x)$ True
S_4: $\exists x \in D, P(x) \land Q(x)$ False

$D = \{ x, y, z \}$
$P = \{ y \}$
$Q = \{ z \}$

There is an element of D, namely x, which is not in P outside Q nor Q outside P, so S_3 is true. However, there is no element of D in $P \land Q$, so S_3 is false.
This page is left (nearly) blank to accommodate work that wouldn’t fit elsewhere.

1: _____/22
2: _____/10
3: _____/ 6

TOTAL: _____/38