Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,
and read the instructions below.)

This test consists of 3 questions on 6 pages (including this one). When you receive the signal to start, please make sure that your copy of the test is complete.

Please answer questions in the space provided. You will earn 20% for any question you leave blank or write “I cannot answer this question,” on.

Good Luck!
Question 1. [22 marks]

Consider the following python functions and definitions, where S, S_1 are sets and P, P_1–P_4 are boolean functions. Note: feel free to ask about how python works, since you are being tested on logic, not programming.

```python
def q0(S, P):
    return any({P(x) for x in S})

def q1(S, P):
    return all({P(x) for x in S})

def q2(S, P):
    return not all({P(x) for x in S})

def q3(S, P):
    return not any({P(x) for x in S})

S1 = {0, 1, 2, 3, 4, 5}
def P1(x):
    return x > 2
def P2(x):
    return x > 3
def P3(x):
    return (not P2(x)) or P1(x)
def P4(x):
    return P1(x) and P2(x)
```

Part (a) [6 marks]

Write the name of each function q_0–q_3 beside the comment(s) below that best describes the condition for which the function returns True. Indicate which are negations of each other.

1. $\forall x \in S, P(x)$ q_1
2. $\exists x \in S, P(x)$ q_0
3. $\forall x \in S, \neg P(x)$ q_3
4. $\exists x \in S, \neg P(x)$ q_2

Student #: ________________________ Page 2 of 6 CONT'D...
Part (b) [16 marks]

Use your answer for the previous part to predict what the output is below. For each answer, briefly explain your thinking.

1. \(q_0(S_1, P_1) \)
\[\exists x \in S_1, x > 2 \rightarrow 3, 4, 5 \text{ are examples} \]

2. \(q_1(S_1, P_2) \)
\[\forall x \in S_1, x > 3 \rightarrow 0, 1, 2, 3 \text{ are counterexample} \]

3. \(q_2(S_1, P_1) \)
\[\exists x \in S_1, \neg (x > 2) \rightarrow 0, 1, 2 \text{ are examples} \]

4. \(q_3(S_1, P_2) \)
\[\forall x \in S_1, \neg (x > 3) \rightarrow 4, 5 \text{ are counterexamples} \]

5. \(q_0(S_1, P_3) \)
\[\exists x \in S_1, \neg (x > 3) \lor (x > 2) \rightarrow 0, 1, 2, 3, 4, 5 \text{ all examples} \]

6. \(q_1(S_1, P_3) \)
\[\forall x \in S_1, \neg (x > 3) \lor (x > 2) \rightarrow \text{no counterexample}. \]

7. \(q_2(S_1, P_4) \)
\[\exists x \in S_1, \neg (x > 3 \land x > 2) \rightarrow 0, 1, 2, 3 \text{ are example} \]

8. \(q_3(S_1, P_4) \)
\[\forall x \in S_1, \neg (x > 3 \land x > 2) \rightarrow 4 \text{ and 5 are counterexample} \]
Question 2. [10 marks]

Part (a) [5 marks]

Consider the following symbolic statement:

\[S_1 : \forall m \in \mathbb{N}, \forall n \in \mathbb{N}, \exists q \in \mathbb{N}, m + n = q \]

1. Write the negation of the symbolic statement \(S_1 \), in such a way that the negation symbol \(\neg \) applies only to predicates such as \(m + n = q \).

\(\exists m \in \mathbb{N}, \exists n \in \mathbb{N}, \forall q \in \mathbb{N}, \neg (m + n = q) \)

2. Which is true, statement \(S_1 \) or its negation? Briefly explain your reasoning.

 ① \(S_1 \) is true
 ② For natural numbers \(m, n \), pick \(q = m + n \in \mathbb{N} \).

Part (b) [5 marks]

Now consider the symbolic statement:

\[S_2 : \exists q \in \mathbb{N}, \forall m \in \mathbb{N}, \forall n \in \mathbb{N}, m + n = q \]

1. Write the negation of the symbolic statement \(S_2 \), in such a way that the negation symbol \(\neg \) applies only to predicates such as \(m + n = q \).

\(\forall q \in \mathbb{N}, \exists m \in \mathbb{N}, \exists n \in \mathbb{N}, \neg (m + n = q) \)

2. Which is true, statement \(S_2 \) or its negation? Briefly explain your reasoning.

 ① \(\neg S_2 \) is true
 ② If \(q = 0 \), pick \(m = n = 1 \). If \(q > 0 \), pick \(m = n = 0 \).
Question 3. [6 marks]

Come up with an example of sets D, P, and Q so that one of statements S_3, S_4 is true, and the other is false. Explain which is true, which false, and why.

Interpret $P(x)$ as $x \in P$, $Q(x)$ as $x \in Q$, and $D(x)$ as $x \in D$.

S_3: $\forall x \in D, P(x) \iff Q(x)$ \hspace{1cm} True

S_4: $\forall x \in D, P(x) \land Q(x)$ \hspace{1cm} False

$D = \{1, 2\}$

$P = \{1\}$

$Q = \{1, 2\}$

There is some element, 2, of D outside $P \cap Q$, so S_4 is false. However, there are no elements in P outside Q or Q outside P, so S_3 is true.
This page is left (nearly) blank to accommodate work that wouldn’t fit elsewhere.

1: _____/22
2: _____/10
3: _____/ 6

TOTAL: _____/38