Wacky Wed—what about tutorials, stay tuned?
A2—getting closer...
We’ve proved: \(P(n) : 2^n \geq 2n \)

Use this to prove that \(2^n \not\in \mathcal{O}(n) \)

\[\forall c \in \mathbb{R}^+, \forall B \in \mathbb{N}, \exists n \in \mathbb{N}, \quad n \geq B \land 2^n > cn \]

Assume \(c \in \mathbb{R}^+ \), assume \(B \in \mathbb{N} \)

Choose \(n = 2 \left(\lceil \log c \rceil + B + 1 \right) \)

Then \(n \in \mathbb{N} \)

\# \(\lceil \log c \rceil \in \mathbb{N}, B, 1, c \in \mathbb{N}, \mathbb{N} \) closed under +

Then \(n \geq B \)

Then \(2^n = 2^{n/2} 2^{n/2} \)

\[\geq 2^{n/2} \cdot n \]

\[> cn \]

\[\lim_{x \to \infty} \frac{2^x}{x} \]

\[= \log x \]

\[2 \log x = x \]
scratch
bounded below

Notice that the definition of big-Omega differs in just one character from big-Oh:

\[\Omega(g) = \{ f : \mathbb{N} \to \mathbb{R}_{\geq 0} \mid \exists c \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \geq cg(n) \} \]

The rôle of \(B \) is, as with big-Oh, to act as a breakpoint, so comparisons don't have to start at the origin.

The rôle of \(c \) is to scale \(g \) down below \(f \).

If you’re proving \(f \in \Omega(g) \), you get to choose \(c \) and \(B \) to suit your proof.
It often happens that functions are bounded above and below by the same function. In other words, $f \in \mathcal{O}(G) \land f \in \Omega(g)$. We combine these two concepts into $f \in \Theta(g)$.

$$\Theta(g) = \{ f : \mathbb{N} \mapsto \mathbb{R}_{\geq 0} \mid \exists c_1 \in \mathbb{R}^+, \exists c_2 \in \mathbb{R}^+, \exists B \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B \Rightarrow c_1 g(n) \leq f(n) \leq c_2 g(n) \}$$

You might want to draw pictures, and conjecture about values of c_1, c_2, B for $f = 5n^2 + 15$ and $g = n^2$.
How do you deal with a general statement about two functions:

\[(f \in O(g) \wedge g \in O(h)) \Rightarrow f \in O(h)\]

Assume \(f, g, h \in f\),

Assume \(f \in O(g) \wedge g \in O(h) \neq \text{antecedent}\)

Then \(\exists c \in \mathbb{R}^+, \exists B, \forall n \in \mathbb{N}, n \geq B \Rightarrow f(n) \leq c \cdot g(n)\) \((\star)\)

Choose \(c_1 \in \mathbb{R}^+, B_1 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B_1 \Rightarrow f(n) \leq c_1 \cdot g(n)\) \((\star \star)\)

Then \(\exists c_2 \in \mathbb{R}^+, \exists B_2 \in \mathbb{N}, \forall n \in \mathbb{N}, n \geq B_2 \Rightarrow g(n) \leq c_2 \cdot h(n)\) \((\star \star \star)\)

Choose \(c' = c_1 \cdot c_2\). Then \(c' \in \mathbb{R}^+\)

Choose \(B' = \max(B_1, B_2)\)

Then \(\forall n \in \mathbb{N}, n \geq B' \Rightarrow f(n) \leq c_1 \cdot g(n) \leq c_1 \cdot c_2 \cdot h(n)\) \((\star \star \star \star)\)

Then \(f \in O(h)\)
How about: $g \in \Omega(f) \iff f \in \mathcal{O}(g)$
scratch