Question 1. [5 marks]
For marking, see separate printouts.
Uncomment these questions/answers before releasing to students.

Question 2. [5 marks]
Read over the declarations of classes BTNode and LLNode, as well as the header and docstring for function root_to_leaves. Then implement the function root_to_leaves.

class BTNode:
 """A node in a binary tree.""

def __init__(self: 'BTNode', item: object,
 left: 'BTNode' =None, right: 'BTNode' =None) -> None:
 """Initialize this node.
 ""
 self.item, self.left, self.right = item, left, right

class LLNode:
 """A node in a linked list.""

def __init__(self: 'LLNode', item: object, link: 'LLNode' =None) -> None:
 """Initialize this node.
 ""
 self.item, self.link = item, link

def __repr__(self: 'LLNode') -> str:
 """Return a string that represents self in constructor (initializer) form.
 ""
 return ('LLNode({}, {})'.format(repr(self.item), repr(self.link))
 if self.link else 'LLNode({})'.format(repr(self.item)))

def __eq__(self: 'LLNode', other: 'LLNode') -> bool:
 """Return whether LLNode self is equivalent to LLNode other"
 return (isinstance(other, LLNode) and
 self.item == other.item and self.link == other.link)

def root_to_leaves(T: BTNode) -> list:
 """
 Return list of paths from T to each of its leaves, or []
if T is None. Each path is a linked list formed from LLNodes. You should return a list containing a single-node linked list when T has no children.

```python
>>> T = BTNode(1, BTNode(2, None, BTNode(3)), BTNode(4, BTNode(5), BTNode(6)))
>>> L1 = root_to_leaves(T)
>>> L2 = [LLNode(1, LLNode(2, LLNode(3))), LLNode(1, LLNode(4, LLNode(5))), LLNode(1, LLNode(4, LLNode(6)))]
>>> len(L1) == len(L2) and all([p in L2 for p in L1])
True
```

```python
if T is None:
    return []
elif T.left is None and T.right is None:
    return [(LLNode(T.item,None))]
else:
    leftchpaths = root_to_leaves(T.left)
    rightchpaths = root_to_leaves(T.right)
    leftpaths = [LLNode(T.item, P) for P in leftchpaths]
    rightpaths = [LLNode(T.item, P) for P in rightchpaths]
    return leftpaths + rightpaths
```

Marking notes: 1 mark for None base case, 1 mark for leaf base case, 3 marks for computing lists of child paths and combining them into list of paths from this node.

Question 3. [5 MARKS]

Read over the class declaration for `BTNode` and the docstring for function `ordered_and_bounded`. Then implement `ordered_and_bounded`.

class BTNode:
 """A node in a binary tree.""

def __init__(self: 'BTNode', item: object,
 left: 'BTNode' =None, right: 'BTNode' =None) -> None:
 """Initialize this node.
 ""
 self.item, self.left, self.right = item, left, right

def ordered_and_bounded(T: BTNode, lower: int, upper: int) -> list:
 """Return a list of items, in ascending order, from nodes of T, with all items no less than lower and no greater than upper.
 Return [] if T is None. You are *not* allowed to sort any list, and you should visit as few nodes as possible.

 preconditions: -- node items in T are comparable,
 ""
 return []
-- T is a binary search tree in ascending order,
that is, all items in every left sub-tree are less
than the sub-tree's root and all items in every right
sub-tree are more than the sub-tree's root

>>> T = BTNode(4, BTNode(2, BTNode(1), BTNode(3)) , BTNode(6, BTNode(5), BTNode(7)))
>>> ordered_and_bounded(T, 2, 5)
[2, 3, 4, 5]

if T is None:
 return []
else:
 return ((ordered_and_bounded(T.left, lower, upper)
 if lower < T.item else []) +
 (T.item if lower <= T.item <= upper else []) +
 (ordered_and_bounded(T.right, lower, upper)
 if upper > T.item else []))

Marking notes: 1 mark for None base case. 1 mark for getting list from left subtree if lower <= T.item. 1 mark for getting list from right subtree if upper >= T.item. 2 marks for adding T.item to list if it is in interval [lower, upper]. 1 mark off if extra nodes are visited, that is BST property not used. 1 mark off if list is sorted.

Question 4. [6 MARKS]

Read the functions hybrid_search and hybrid_search2. For each function, decide which of the following complexity classes best describe that function's worst-case performance on a list of n elements:

\[
O(1) \quad O(\log n) \quad O(n) \quad O(n \log n) \quad O(n^2)
\]

For each function, explain why your choice of big-Oh complexity makes sense. Also explain what behaviour you expect hybrid_search and hybrid_search2 should exhibit when run on a computer on a list of size 2n versus a list of size n.

Marking notes:
Please give 2/6 if their solutions are wrong according to the below criteria, but they say that hybrid_search2 is asymptotically faster than hybrid_search.

def hybrid_search(x:int,L:list) -> bool:
 """precondition: L is sorted
 >>> L = [1,5,9, 9, 9, 12, 12, 15, 19,20,40,41,42,43,50,100,500]
 >>> hybrid_search(21,L)
 False
 >>> hybrid_search(100,L)
 True
 """
 def helper(i,j) -> bool:
 # precondition: 0 <= i <= j < len(L)
 if (j-i) < len(L)/10:
 return any([y == x for y in L[i:j+1]])
if \(x < L[(i+j)/2]\):
 return helper(i, (i+j)/2-1)
elif \(x > L[(i+j)/2]\):
 return helper((i+j)/2+1, j)
else:
 return True
return helper(0, len(L)-1)

\(\mathcal{O}(n)\). The call to the helper methods occur at most 4 times before \(j - i < \text{len}(L)/10\), and then we must search a slice of size between \(n/10\) and \(n/20\). Then each element in a slice with at least \(n/20\) elements must be inspected. I expect the running time to roughly double if I increase the size of the list from \(n\) to \(2n\).

Marking notes: 2 marks for choosing \(\mathcal{O}(n)\) with a suitable explanation. 1 mark if their expectation of how running time scales with doubling the list size is consistent with (whatever) choice of complexity class they make.

def hybrid_search2(x:int, L:list) -> bool:
 """precondition: L is sorted
 >>> L = [1, 5, 9, 9, 9, 12, 12, 15, 19, 20, 40, 41, 42, 43, 50, 100, 500]
 >>> hybrid_search(21, L)
 False
 >>> hybrid_search(100, L)
 True
 """
 def helper(i,j) -> bool:
 # precondition: 0 <= i <= j < len(L)
 if (j-i) < 10:
 return any([y == x for y in L[i:j+1]])
 if x < L[(i+j)/2]:
 return helper(i, (i+j)/2-1)
 elif x > L[(i+j)/2]:
 return helper((i+j)/2+1, j)
 else:
 return True
 return helper(0, len(L)-1)

\(\mathcal{O}(\log n)\). The helper method is called approximately \(\log n - 3\) times, and then a linear search of no more than 10 items is performed, so the complexity is proportional to \(\log n\). I expect that the running time would increase by a constant as the size of the input list was doubled.

Marking notes: 2 marks for indicating \(\mathcal{O}(\log n)\) and giving a suitable explanation. 1 mark for indicating that run time would increase by a constant if the length of the input list were doubled.