CSC148 fall 2013

sorting big-oh

week 9

Danny Heap
heap@cs.toronto.edu
BA4270 (behind elevators)
http://www.cdf.toronto.edu/~heap/148/F13/
416-978-5899

November 6, 2013
Outline

more big-oh
running time analysis

algorithm’s behaviour over large input (size n) is common way to compare performance

- **constant**: $c \in \mathbb{R}^+$ (some positive number)
- **logarithmic**: $c \log n$
- **linear**: cn (probably not the same c)
- **quadratic**: cn^2
- **cubic**: cn^3
- **exponential**: $c2^n$
- **horrible**: cn^n or $cn!$
case: $\lg n$

this is the number of times you can divide n in half before reaching 1.

- refresher: $a^b = c$ means $\log_a c = b$.

- this runtime behaviour often occurs when we “divide and conquer” a problem (e.g. binary search)

- we usually assume $\lg n$ (log base 2), but the difference is only a constant:

$$2^{\log_2 n} = n = 10^{\log_{10} n} \implies \log_2 n = \log_2 10 \times \log_{10} n$$

- so we just say $O(\lg n)$.
Since big-oh is an upper-bound the various classes fit into a hierarchy:

$$O(1) \subseteq O(\lg n) \subseteq O(n) \subseteq O(n^2) \subseteq O(n^3) \subseteq O(2^n) \subseteq O(n^n)$$
selection sort (review?)

idea: for each position in the list, select the minimum item from that position on
merge sort

idea: divide the list in half, (merge) sort the halves, then merge the sorted results
quick sort

idea: choose a pivot; decide where the pivot goes with respect to the rest of the list, repeat on the partitions...
scaling:

How well do these various sorts perform as the size of the problem (list length) increases? Time and compare.
term test #2

- Same time as lecture, but in EX300 (A–L) and EX310 (M–Z)

- You are responsible for lecture examples, assignment 2, labs, and exercises. That’s where I’ll look for suitable questions.

- Topics include, but not limited to: binary trees, linked lists, binary search trees, recursion on trees and lists, big-oh analysis