Complete the missing expressions below

(require picturing-programs)

; sierpinski triangle of depth 0
(define sierp_0 (an expression for a solid green triangle of size 10))

; sierpinski triangle of depth 1
(define sierp_1 (an expression for sierp_0 above two sierp_0s beside each other))

; sierpinski triangle of depth 2
(define sierp_2 (an expression for sierp_1 above two sierp_1s beside each other))

; sierpinski triangle of depth 3
(define sierp_3 (an expression for sierp_2 above two sierp_2s beside each other))

; sierpinski triangle of depth 4
(define sierp_4 (an expression for sierp_3 above two sierp_3s beside each other))
Complete the missing parts of the function \texttt{sierp} below.

\begin{verbatim}
(require picturing-programs)

; sierp : number -> image
; Sierpinski's triangle of depth d
(define (sierp d)
 (cond
 [(zero? d)
 (here you need an expression for a solid green triangle of size 10)]
 [(equal? d 1)
 (an expression for (sierp 0) above two (sierp 0)s beside each other)]
 [(equal? d 2)
 (an expression for (sierp 1) above two (sierp 1)s beside each other)]
 [(equal? d 3)
 (an expression for (sierp 2) above two (sierp 2)s beside each other)]
 [(equal? d 4)
 (an expression for (sierp 3) above two (sierp 3)s beside each other)]
)
)
\end{verbatim}
The definition of `sierp` was a bit repetitive, and only went as far as allowing `(sierp 4)`. Use the same ideas, but do some arithmetic with the placeholder `d` to define `sierpinski` below:

```scheme
(require picturing-programs)

(define (sierpinski d)
  (cond
   [(zero? d) (triangle 10 "solid" "green")]
   [else
    (an expression to put a sierpinski of one smaller than `d` above
     two sierpinskis of one smaller than `d`) ])
)
```