UNIVERSITY OF TORONTO
Faculty of Arts and Science
Midterm #2
CSC 104H1
Duration — 50 minutes
No aids allowed

Student Number: ________________________________
Last Name: ________________________________
First Name: ________________________________

Do not turn this page until you have received the signal to start.
(In the meantime, please fill out the identification section above,
and read the instructions below.)

This test consists of 3 questions on 5 pages (including this one). When
you receive the signal to start, please make sure that your copy of the
test is complete.
Please answer questions in the space provided. You will earn 20% for
any question you leave blank or write “I cannot answer this question,”
on. You will earn substantial part marks for writing down the outline of
a solution and indicating which steps are missing.
Write your student number at the bottom of pages 2-5 of this test.

1: ______/10
2: ______/26
3: ______/ 7
TOTAL: ______/43

Good Luck!
QUESTION 1. [10 marks]

Suppose your (ancient) computer can store 2 million non-negative whole numbers as 8-bit binary numbers, without any need for a “sign” bit.

Part (a) [2 marks]

How many DIFFERENT non-negative whole numbers can your machine store? Explain your answer.

Part (b) [2 marks]

Give an example of a non-negative whole number that could not be stored on your machine. Explain why.

Part (c) [2 marks]

Give an example of some arithmetic operations that takes numbers that can be stored on your machine, but produces a number that cannot be stored on your machine. Explain.

Part (d) [4 marks]

Write 6 and 7 as binary numbers, and multiply these binary numbers. Show your work.
QUESTION 2. [26 MARKS]

Explain as much as you can of what’s going on in the following Python sessions.

PART (A) [3 MARKS]

>>> 11/3 > 9/3
False

PART (B) [2 MARKS]

>>> 'okkee' in 'bookkeeper'
True

PART (C) [6 MARKS]

>>> number1 = 5
>>> string1 = 'five'
>>> number1 = string1
>>> string1 = number1
>>> type(number1)
<type 'str'>
>>> type(string1)
<type 'str'>
Part (d) [6 marks]

```python
>>> numList = [2,3,5,7,11]
>>> wordList = ['two', 'three', 'five', 'seven', 'eleven']
>>> numList
[2, 'five', 5, 7, 11]
>>> wordList
['two', 'three', 5, 'seven', 'eleven']
```

Part (e) [9 marks]

```python
>>> list1 = ['basil', 'olive oil', 'pine nuts', 'garlic']
>>> list2 = ['lentils', 'salt', 'tumeric', 'water']
>>> recipe = {'pesto': list1, 'dal' : list2}
>>> recipe['pesto'].append(recipe['dal'][3])
>>> recipe['pesto']
['basil', 'olive oil', 'pine nuts', 'garlic', 'water']
```
QUESTION 3. [7 marks]

PART (A) [4 marks]

What is the maximum number of regions you can divide a sheet of paper into with 7 straight lines? Explain your answer (a formula doesn’t count as an explanation).

PART (B) [3 marks]

Suppose that you correctly filled in the code for lazyLit.py from Assignment 2, but inadvertently replaced the contents of the file alice30.txt with a list of all the different surnames in the Toronto phonebook. The names occur in alphabetical order, and there are no duplicate names. What is the result of the following Python session? Explain why.

```python
>>> import lazyLit
>>> bookTable = {}
>>> lazyLit.buildTable('alice30.txt', 3, bookTable)
>>> lazyLit.useTable(100, 3, bookTable)
```

Total Marks = 43