
CSC207 - Course Wrap-up

Ilir Dema

Summer 2016

The starting point

p u b l i c c l a s s He l l oWor ld {
p u b l i c s t a t i c vo i d main (S t r i n g [] a r g s) {

System . out . p r i n t l n (” He l l o wor ld ! ”) ;
}

}

Learning a new language

I A new memory model.

I Static typing rather than dynamic typing.

I Compiled rather than interpreted.

I Primitives vs. only objects.

I Everything belongs to a class.

I Generics.

I Interfaces and abstract classes.

I A philosophy oriented towards safety.

I A huge API.

You also did more of the learning yourself than before.

More languages

Youll see more languages and the underlying language design
principles and approaches:

csc209: Software Tools and Systems Programming

csc324: Principles of Programming Languages

csc343: Introduction to Databases

csc309: Programming on the Web

Value:

I knowing which tool to apply in a given situation

I deeper appreciation of a languages design and how best to use
it

Safety

Much of how Java does things (types, casting, etc.) is intended to
make programs safer.

Safety was a key principle behind the design of Java.

Safety came up again when we learned about floating point.

Learn more about floating point and numerical algorithms in csc336:
Numerical Methods.

Design

We stepped up several levels from designing functions, methods and
classes, to design whole software systems.

CRC cards provided a way to brainstorm and communicate about
design at a very high level.

UML provided a way to specify a design, still at a high level and
independent of language.

Using a highly practical approach, you have, by now, designed your
first e-commerce application!

Design Patterns

Language-independent.

Generic solutions to recurring design problems.

Solutions that follow the object-oriented design principles and best
practices.

Youll see more design patterns in csc301: Introduction to Software
Engineering.

The algorithmic analog: algorithmic design techniques e.g., divide
and conquer, and greedy algorithms. Youll learn these in csc373:
Algorithm Design, Analysis, and Complexity.

Regular expressions

These have many practical applications:

Parsing input in a Java program (or another language).

Many Unix commands, such as grep, use regular expressions.

Regular expressions and related concepts are important in
language design and compilers. csc488: Compilers and
Interpreters

Learn more about the underlying theory in csc236: Introduction to
the Theory of Computation, and csc448: Formal Languages and
Automata.

Software Development Process

Working in teams.

Iterative and incremental software development.

Changing requirements.

Elements of state of the art software development practices,
such as Scrum and XP.

Software Development Process

You will learn much more through:

csc301: Introduction to Software Engineering

csc302: Engineering Large Software Systems

project courses (csc494/495 or csc490)

UCOSP: undergraduate capstone open-source project

Learn the formal underpinnings of testing in csc410: Software
Testing and Verification.

The Final Exam

I 3 hours

I closed book, but there is an API at the end

I there is also some scrap paper at the end

I Javadoc and internal comments not required

I import statements not required

I helper methods always welcome

I assume all input is valid

Possible types of questions

I Code writing

I Tracing and understanding code where the memory model
helps you predict results

I The fundamental concepts of OOP

I Exceptions

I Multiple choice and short answer questions

I Implementing test cases in JUnit

I Design patterns: recognize, explain, write code with the
patterns we have covered

I Decode and write UML

I Regular expressions: write and read them

I Agile and scrum

How to best prepare for the exam

I Revisit the assignment and exercises. Learn from what you did
previously; improve it.

I Write code that tries to poke holes in your understanding of
Java concepts (name lookup, exceptions, etc.).

I Write regular expressions and test them in Java.

I Write code that uses the design patterns we studied.

I Write some UML.

I Work out exercises posted on the course web site.

I Solve old tests and exams.

