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Ariane 5 Rocket Launch




Ariane 5 rocket explosion

In 1996, the European Space Agency’s Ariane 5 rocket
exploded 40 seconds after launch.

During conversion of a 64-bit to a 16-bit format, overflow
occurred: the number was too big to store in 16 bits.

This hadn’t been expected because the data (acceleration
reported by sensors) had never been this large before. But
this new rocket was faster than its predecessor.

$7 billion of R&D had been invested in this rocket.

Reference:
http://www.around.com/ariane.html




Example 1

 Perform some simple arithmetic, and check that the
laws of mathematics hold.

e Code: Adding.java



Is Java broken?

It's not only Java. Check this out in Python:
>>> x = 0.1
>>> sum = X + X + X
>>> sum == 0.3
False
>>> sum
0.30000000000000004
>>> bigger = 1.0
>>> g = 1.0e-6
>>> suml = s + s + s +s +s +s +s +s + s + s + bigger
>>> sum2 = bigger + s + s + s + s + s + s + s + s + s + s
>>> guml == sum2

False
>>> guml

1.00001
>>> sum2
1.0000099999999992



Representing numbers

III

It all makes sense if you understand how "“rea
numbers are represented.

First, consider an int like 42. Hardware doesn't
directly represent 4s or 2s -- everything is binary.

42 =
IX254+40X24+1Xx234+40x224+1x21+0x20

So 42 can be represented by 101010 (base 2).



Representing fractions

Fractions can be handled using the same approach.

Example: 0.4375 =
Ox21+1x22+1x23+1x2*%
=0/2+1/4+1/8 + 1/16
= 0.25 + 0.125 + 0.0625

So we can represent 0.4375 using 0.0111 (base 2).

Another example: 0.1 =
0.000110011001100110011001100...

0.1 does not have a finite binary representation



Some problem numbers

You already knew from math that some numbers do
not have a finite representation.

Now we’'ve seen that some numbers that have a
finite representation in decimal do not in binary!

Computer systems have finite memory.
But we need to represent numbers that take an
infinite number of bits.

Solution?



IEEE-754 Floating Point

 Like a binary version of scientific notation

« 32 bits for a float (64 bits for a double) as follows:
1 bit for the sign
« 8 bits for the exponent e
o 23 bits for the mantissa (significand) M



Allocation of 32 bits

1 bit for the sign:
1 for negative and O for positive
8 bits for the exponent e

 To allow for negative exponents, 127 is added to
the exponent.

 So the range of possible exponents is
not O to 28-1 = 0 to 255,

but (0-127) to (255-127) = -127 to 128.
« 23 bits for the mantissa M

 Since the first bit must be 1, we don’t waste
space storing it!

« So we get 24 bits of information into 23 bits.



IEEE-754 Floating Point
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sign bit (8 bits) (23 bits)

\l/| exponent mantissa
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Rounding

If we have to lose some digits, we don’t just
truncate, we round.

In rounding a decimal to a whole number, an issue
arises: If we have a 0.5, do we round up or down?

If we always round up, we are biasing towards
higher values.

“"Proper” rounding: round to the nearest even
number.

E.g., 17.5 is rounded up to 18 but 16.5 is rounded
down to 16.

The IEEE standard uses proper rounding.



Historical aside

30 years ago, computer manufacturers each had
their own standard for floating point.

Problem? Writing portable software!

Advantage to manufacturers? Customers got locked
in to their particular computers.

In the late 1980s, the IEEE produced the standard
that now virtually all follow.

Kahan spearheaded the effort, and won the 1989
Turing Award for it.



Back to the example (Adding. java)

« As we saw, 0.1 cannot be represented exactly in
binary, leading to the unexpected result.

« And adding a very small quantity to a very large
quantity can mean the smaller quantity falls off the
end of the mantissa.

 But if we add small quantities to each other, this
doesn’t happen.
And if they accumulate into a larger quantity, they
may not be lost when we finally add the big
quantity in.



Examples 2 and 3

« The previous example seems contrived, but
consider these situations that happen all the time:

 Accumulating a value in a loop.
Code: Totalling. java

 Adding up a list of doubles.
Code: ArrayTotal. java




Lessons

« When adding floating point numbers, add the
smallest first.

 More generally, try to avoid adding dissimilar
quantities.

« Specific scenario: When adding a list of floating
point numbers, sort them first.



Example 4

« Repeat a task for values in a particular range with
an increment of 0.1.

 For example, for values 0.1 to 0.5 with an
increment of 0.1.

« For example, for values 1.1 to 1.5 with an
increment of 0.1.

e Code: FunctionValues. java



Lessons

 Don't use floating point variables to control what is
essentially a counted loop.

 Also: Notice that we wrote
x =1.0 + 1 * 0.1;
instead of initializing x to 1.0 and then repeatedly
adding 0.1.
Why? Fewer total arithmetic operations means
fewer rounding errors are introduced.

 Use fewer arithmetic operations where possible.



Example 5

A very simple program that just prints the same
variable using different formats.

e Code: Examine. java



What happened?

We shouldn’t be surprised by now to find out that 4/5 can't
be represented exactly in a float. Lots of things can't.

But the represented value should be off by a tiny bit.
What are all these extra digits?? bit 24

4/5 = 1.10011001 1001100 Lo x 271

It gets rounded to
1.10011001100110011001101 x 2

When we ask to print it as a decimal number, it gets
converted.
The exact equivalent is

0.800000011920928955078125000000

But only 7 of those digits are significant.



Lesson

 Don’t print more precision in your output than you
are holding.



Why does this matter?



Patriot missile accident

In 1991, an American missile failed to track and destroy
an incoming missile. Instead it hit a US Army barracks,
killing 28.

The system tracked time in tenths of seconds. The
error in approximating 0.1 with 24 bits was magnified
in its calculations.

At the time of the accident, the error corresponded to

0.34 seconds. A Patriot missile travels about half a km
in that time.

Reference:
http://www.ima.umn.edu/~arnold/disasters/
patriot.html|




Sinking of an oil rig
In 1992, the Sleipner A oil and gas platform sank in the

North Sea near Norway.

Numerical issues in modelling the structure caused shear
stresses to be underestimated by 47%.

As a result, concrete walls were not built thick enough.
Cost: $700 million

Reference:
http://www.ima.umn.edu/~arnold/disasters/sleipner.html




What should you do?

“95% of folks out there are completely
clueless about floating-point.”
James Gosling



Follow the lessons

Use double instead of float.

When adding floating point numbers, add the smallest
first.

More generally, try to avoid adding dissimilar quantities.

Specific scenario: When adding a list of floating point
numbers, sort them first.

Don't use floating point variables to control what is
essentially a counted loop.

Use fewer arithmetic operations where possible.

Don’t print more precision in your output than you are
holding.



There is lots more to learn!

 Consider taking csc336: Numerical Methods



