
CSC207 - Week 11

Ilir Dema

Summer 2016

Topics

1. Singleton Pattern

2. Iterator Pattern

3. Regular Expressions

Note: Those are the last topics to appear on the final.

Next week: Floating Point numbers, Review.

Singleton Pattern

I Context
I Classes for which only one instance should exist (singleton).
I Provide a global point of access.

I Problem
I How do you ensure that it is never possible to create more than

one instance of a singleton class?

I Forces
I The use of a public constructor cannot guarantee that no more

than one instance will be created.
I The singleton instance must be accessible to all classes that

require it.

Singleton: Solution

Singleton

-instance: Singleton

+getInstance(): Singleton
-Singleton()

Clients access a Singleton instance solely though Singleton’s

getInstance() operation.

Serialization

If the Singleton class implements the Serializable interface,
when a singleton is serialized and then deserialized more than once,
there will be multiple instances of Singleton created. In order to
avoid this the readResolve method should be implemented.

p u b l i c c l a s s S i n g l e t o n implements S e r i a l i z a b l e {
// Some code
// This method i s c a l l e d immed i a t e l y a f t e r
// an o b j e c t o f t h i s c l a s s i s d e s e r i a l i z e d .
// This method r e t u r n s the s i n g l e t o n i n s t a n c e .
p r o t e c t e d Object r e adRe s o l v e () {

r e t u r n g e t I n s t a n c e () ;
}

}

What is an iterator

An iterator is a mechanism that permits all elements of a collection
to be accessed sequentially, with some operation being performed on
each element. In essence, an iterator provides a means of ”looping”
over an encapsulated collection of objects. Examples of using
iterators include

I Visit each file in a directory (aka folder) and display its name.

I Visit each node in a graph and determine whether it is
reachable from a given node.

I Visit each customer in a queue (for instance, simulating a line
in a bank) and find out how long he or she has been waiting.

I Visit each node in a compiler’s abstract syntax tree (which is
produced by the parser) and perform semantic checking or code
generation.

Iterator Design Pattern

I Context
I A container/collection object

I Problem
I Want a way to iterate over the elements of the container.
I Want to have multiple, independent iterators over the elements

of the container.
I Do not want to expose the underlying representation (i.e.,

should not reveal how the elements are stored).

Iterator Design Pattern: Solution

�interface�
Iterator

+first()
+next()
+isDone()
+currentItem()

YourIteratorClass

�interface�
Container

+createIterator(): Iterator

YourContainerClass

+createIterator(): Iterator

Iterator Design Pattern: Java

�interface�
Iterator

+hasNext(): boolean
+next(): T
+remove: void

T

YourIteratorClass

�interface�
Iterable

+iterator(): Iterator

T

YourIterableClass

+iterator(): Iterator<T>

Iterator: Example in Java

�interface�
Iterator

+hasNext(): boolean
+next(): T
+remove(): void

T

AddressBookIterator

�interface�
Iterable

+iterator(): Iterator

T

AddressBook

+iterator(): Iterator<Contact>

Regular expressions

I A regular expression is a pattern that a string may or or may
not match.

I Example: [0− 9]+

[0− 9] means a character in that range
+ means one or more of what came before
Strings that match: 91254
Strings that dont: abc empty string

I Symbols like [,], and + have special meaning. They are not
part of the string that matches. (If we want them to be, we
escape them with a backslash.)

Example Uses

I Handling white space
I A program ought to be able to treat any number of white space

characters as a separator.

I Identifying blank lines
I Most people consider a line with just spaces on it to be blank.

I Validating input
I To check that input is has the expected format (e.g., a date in

DD-MM-YYYY format).

I Finding something within some input
I E.g., finding dates within paragraphs of text.

Who do we need patterns?

I We could accomplish those tasks without using patterns.

I But its much easier to declare a pattern that you want
matched than to write code that matches it.

I Therefore many languages offer support for this.
I Bonus: By having the pattern explicitly declared, rather than

implicit in code that matches it, its much easier to:
I understand what the pattern is
I modify it

Editors, Unix, Python, Java...

I Regular expressions are used in many places.

I Editors like vi, emacs, and Sublime Text allow you to use
regular expressions for searching.

I Many unix commands use regular expressions. Example:

grep pattern file

prints all lines from file that match pattern

I Many programming languages provide a library for regular
expressions.

I The syntax varies from context to context, but the core is the
same everywhere.

Simple patterns

Pattern Matches Explanation

a∗ ” ’a’ ’aa’ zero or more

b+ ’b’ ’bb’ one or more

ab?c ’ac’ ’abc’ zero or one

[abc] ’a’ ’b’ ’c’ one from the set

[a− c] ’a’ ’b’ ’c’ one from the range

[abc]∗ ” ’acbccb’ combination

Note: In Java, patterns can be used to match an occurrence
anywhere in the string, or one that consumes the whole string,
among other options.

Anchoring

Lets you force the position of the match.

^ matches the begnining of the line

$ matches the end

Neither consumes any characters.

Pattern Text Result

b+ abbc matches

^b+ abbc Fails (no b at start)

^a*$ aabaa Fails (not all a’s)

Escaping

I Match actual

^ and $ and [etc.

I using escape sequences

\^ and \$ and \[etc.

I Remember, we also use escapes for other characters:

\t is a tab character
\n is a newline

Predefined Caracter Classes

Construct Description

. any character

\d a digit [0-9]

\D a non-digit [^0-9]

\s a whitespace char [\t\n\x0B\f\r]

\S a non whitespace char [^\s]

\w a word char [a-zA-Z_0-9]

\W a non word char [^\w]

Defining your own character classes

Construct Description

[abc] a,b or c (simple class)

[^abc] any char except a,b, or c (negation)

[a-zA-Z] a through z or A through Z inclusive (range)

[a-d[m-p]] a through d or m through p (union)

[a-z&&[def]] d, e, or f (intersection)

[a-z&&[^bc]] a through z except for b and c (subtraction)

[a-z&&[^m-p]] a through z and not m through p (subtraction)

Quantifiers

Construct Description

X? 0 or 1 times

X* 0 or more times

X+ 1 or more times

X{n} exactly n times

X{,n} at least n times

X{n,m} at least n but no more than m times

Capturing Groups and Backreferences

Capturing groups allow you to treat multiple characters as a
single unit.

Use parentheses to group.

Capturing groups are numbered by counting their opening
parentheses from left to right.

((A)(B(C))) has the following groups:

1. ((A)(B(C)))
2. (A)
3. (B(C))
4. (C)

Capturing Groups and Backreferences

The section of the input string matching the capturing group(s) is
saved in memory for later recall via backreference.

A backreference is specified in the regular expression as a backslash
(\) followed by a digit indicating the number of the group to be
recalled.

Pattern Example matching string

(\d\d)\1 1212

(\w*)\s\1 asdf asdf

Regular expressions in Java

The java.util.regex package contains:

Pattern: a compiled regular expression
Matcher: the result of a match

Example: RegexDemo

Regular expressions and language theory

I Language theory uses a very restricted form of regular
expression.

I The set of strings accepted by a regular expression is said to be
a language.

I BNF (Backus Normal Form or BackusNaur Form) rules are
another way of defining a language. Example:

<expr> ::= <term>|<expr> + <term>|<expr> - <term>

<term> ::= <factor>|<term> * <factor>|<term> / <factor>

<factor> ::= <number>| (<expr>)

I BNF is a more expressive notation: There are languages you
can describe with BNF that you cant describe with regular
expressions.

I E.g.: a sequence of a’s followed by the same number of b’s.

Topics

