CSC207 - JUnit

llir Dema

Summer 2016

Unit Testing

» The goal is to fully test each unit.
» In Java, a unit is (often) a method.

» For example, calling each method at least once. If the
behaviour of the method varies with different circumstances,
then testing each circumstance is necessary.

Unit Testing

Unit testing follows a pattern
» Lots of small, independent tests
> Reports passes, failures, and errors
» Some optional setup and teardown shared across tests
» Aggregation (combine tests into test suites)

We could accomplish all of this by hand, but these design principles
inspired the development of JUnit:

> When you see a pattern, build a framework
» Write shared code once

» Make it easy for people to do things the right way

Setup and Teardown

There are three steps in running a test:
setup, run, and teardown.

The setup phase is in a single method annotated with @Before
The teardown phase is in a single method annotated with @After
These run before and after every test method.

The methods annotated with @BeforeClass run once before all

test methods in that test class are executed, and those methods
annotated with @AfterClass run once after.

The setup and teardown methods are used to avoid repetition. For
example, to create/destroy data structures required for more than
one test method.

Using JUnit in Eclipse

v

Define the method signatures for the class to be tested.

Select the class.

v

v

Have Eclipse create JUnit tests.

v

Replace the dummy method bodies with real ones.

Add more test cases.

v

v

(Now, write your code.)

Selecting Test Cases

Test for success
» General cases, well-formatted input, boundary cases
» Classics: 0, 1, more; odd, even; beginning, middle, end
» Check for data structure consistency
Test for atypical behavior
» Does it handle invalid input (if required)?

» Does it throw the exceptions it is supposed to?

Testing Guidelines

Have one test class per class being tested.

Have at least one test method per method begin tested.
More only if there multiple test cases.

Name your test methods testMethodNameDescription
Use annotations (e.g., @Test, @Before, @After, ...).
Document your test cases.

Avoid duplicate test cases.

Design for Testability

» When you are writing code, think about what you need to test
and how you can test it.

» Write methods that do a single task.
» Separate input, computation, and output when possible.
» Modularity, modularity, modularity.
» Dont delay writing tests! Write tests before you write code as

part of the requirements stage and update those tests as or
after you write code.

Assertion

Single-Outcome Assertions:
fail;
Stated Outcome Assertions:

assertNotNull(object); OR
assertNotNU11l (msg,0Object) ;
assertTrue(bool); OR assertTrue(msg,bool);

Equality Assertions

assertEqual(exp, act); OR assertEqual(msg, exp,
act);

Fuzzy Equality Assertions

assertEqual(msg, expected, actual, tolerance) ;

Possible results

> pass: test produced the expected outcome
» fail: test ran but produced an incorrect outcome

> error: test ran but produced an incorrect behaviour (i.e., it
threw an exception that was unexpected)

Testing Code with Exceptions

@Test(expected=IndexOutOfBoundsException.class)
public void testlndexOutOfBoundsException() {
Arraylist emptylList = new Arraylist();

Object o = emptylList.get(0);

Testing Code with Exceptions

QTest
public void testlndexOutOfBoundsException() {
ArraylList emptyList = new Arraylist();
try {
Object o = emptylist.get (0);
AssertFail(IndexOutOfBoundsException not
thrown: 0. :
} catch (IndexOutOfBoundsException e) {

}

Testing Code with Inheritance

A

Z2R

BTest CTest

Example: inheritance

Person

name : String[]
dob : String
gender : String

+ Personiname: String[], dob: String, gender: String)

+ getMame(): String[]

+ setMame({name: String[]) : void
+ getDob() : String

+ setDeb(deb: String) : void

+ getGender() - String

+ setGender(gender: String) : void
+ to5tring(): String

=interfaces
IDed<T=

+getlD{) : T

Student

- studentMumber : String
- grades: Map<5String, Grade>

+ Student{name: String[], dob: String,

gender: String, studentMumber: String)
+ tostring(): String
+ addGrade(course: String, grade: int): void
+ addGrade(course: String, grade: String): void
+ getGrade{course: String): Grade

Example: testing

TestParson

+ testGetMame(): void
+ testSetName() : void
+ testGetDobi) : void

+ testSetDob() ; void

+ testGetGender() : void
+ testSetGender() : void
+ testToString(): void

Fa

TestStudent

+ testToString(); void

+ testAddGradelnt(): void

+ testAddGradeletter(): void
+ testGetGrade(): void

+ testGetlD(): void

Test-driven Development

Write your tests first!
> In the real world, this is the ideal.
The tests are based on requirements rather than code.
The tests determine the code you need to write.
There is no code unless there is a test that requires it in order
to pass.

v vy

» This approach aids in the definition of requirements.

» It provides tangible evidence of progress.

