
1

TheTarPit

Een schip op het strand is een baken in zee.

[A ship on the beach is a lighthouse to the sea. ]

DUTCH PROVERB

C. R. Knight, Mural of La Brea Tar Pits

Photography Section, Natural History Museum of Los Angeles County



The Tar Pit

No scene from prehistory is quite so vivid as that of the mortal

struggles of great beasts in the tar pits. In the mind's eye one sees

dinosaurs, mammoths, and sabertoothed tigers struggling against

the grip of the tar. The fiercer the struggle, the more entangling the

tar, and no beast is so strong or so skillful but that he ultimately

sinks.

Large-system programming has over the past decade been

such a tar pit, and many great and powerful beasts have thrashed

violently in it. Most have emerged with running systems—few

have met goals, schedules, and budgets. Large and small, massive

or wiry, team after team has become entangled in the tar. No one

thing seems to cause the difficulty—any particular paw can be

pulled away. But the accumulation of simultaneous and interact-

ing factors brings slower and slower motion. Everyone seems to

have been surprised by the stickiness of the problem, and it is hard

to discern the nature of it. But we must try to understand it if we
are to solve it.

Therefore let us begin by identifying the craft of system pro-

gramming and the joys and woes inherent in it.

The Programming Systems Product

One occasionally reads newspaper accounts of how two program-

mers in a remodeled garage have built an important program that

surpasses the best efforts of large teams. And every programmer

is prepared to believe such tales, for he knows that he could build

any program much faster than the 1000 statements/year reported

for industrial teams.

Why then have not all industrial programming teams been

replaced by dedicated garage duos? One must look at what is being

produced.

In the upper left of Fig. 1.1 is a program. It is complete in itself,

ready to be run by the author on the system on which it was

developed. That is the thing commonly produced in garages, and



The Programming Systems Product

^^^^^^^^^^^^^^^^^^^Hr ' yo

^^HMB A A ^^^H
^|HK Program Programming ^^^

System i

'J

(Interfaces ]

System Integration) ;

\

X3
f

i

A A
\

Programming
i

Programming
|

Product Systems

{Generalization,

Testing,

Documentation,

Maintenance)

Product

Fig. 1.1 Evolution of the programming systems product

that is the object the individual programmer uses in estimating

productivity.

There are two ways a program can be converted into a more

useful, but more costly, object. These two ways are represented by

the boundaries in the diagram.

Moving down across the horizontal boundary, a program

becomes a programming product. This is a program that can be run.



The Tar Pit

tested, repaired, and extended by anybody. It is usable in many
operating environments, for many sets of data. To become a gener-

ally usable programming product, a program must be written in a

generalized fashion. In particular the range and form of inputs

must be generalized as much as the basic algorithm will reasonably

allow. Then the program must be thoroughly tested, so that it can

be depended upon. This means that a substantial bank of test

cases, exploring the input range and probing its boundaries, must

be prepared, run, and recorded. Finally, promotion of a program

to a programming product requires its thorough documentation, so

that anyone may use it, fix it, and extend it. As a rule of thumb,

I estimate that a programming product costs at least three times as

much as a debugged program with the same function.

Moving across the vertical boundary, a program becomes a

component in a programming system. This is a collection of interact-

ing programs, coordinated in function and disciplined in format,

so that the assemblage constitutes an entire facility for large tasks.

To become a programming system component, a program must be

written so that every input and output conforms in syntax and

semantics with precisely defined interfaces. The program must

also be designed so that it uses only a prescribed budget of re-

sources—memory space, input-output devices, computer time. Fi-

nally, the program must be tested with other system components,

in all expected combinations. This testing must be extensive, for

the number of cases grows combinatorially. It is time-consuming,

for subtle bugs arise from unexpected interactions of debugged

components. A programming system component costs at least

three times as much as a stand-alone program of the same func-

tion. The cost may be greater if the system has many components.

In the lower right-hand corner of Fig. 1.1 stands the program-

ming systems product. This differs from the simple program in all of

the above ways. It costs nine times as much. But it is the truly

useful object, the intended product of most system programming

efforts.



The Joys of the Craft

The Joys of the Craft

Why is programming fun? What delights may its practitioner

expect as his reward?

First is the sheer joy of making things. As the child delights

in his mud pie, so the adult enjoys building things, especially

things of his own design. I think this delight must be an image of

God's delight in making things, a delight shown in the distinctness

and newness of each leaf and each snowflake.

Second is the pleasure of making things that are useful to

other people. Deep within, we want others to use our work and

to find it helpful. In this respect the programming system is not

essentially different from the child's first clay pencil holder ''for

Daddy's office."

Third is the fascination of fashioning complex puzzle-like

objects of interlocking moving parts and watching them work in

subtle cycles, playing out the consequences of principles built in

from the beginning. The programmed computer has all the fasci-

nation of the pinball machine or the jukebox mechanism, carried

to the ultimate.

Fourth is the joy of always learning, which springs from the

nonrepeating nature of the task. In one way or another the prob-

lem is ever new, and its solver learns something: sometimes practi-

cal, sometimes theoretical, and sometimes both.

Finally, there is the delight of working in such a tractable

medium. The programmer, like the poet, works only slightly re-

moved from pure thought-stuff. He builds his castles in the air,

from air, creating by exertion of the imagination. Few media of

creation are so flexible, so easy to polish and rework, so readily

capable of realizing grand conceptual structures. (As we shall see

later, this very tractability has its own problems.)

Yet the program construct, unlike the poet's words, is real in

the sense that it moves and works, producing visible outputs sepa-

rate from the construct itself. It prints results, draws pictures,

produces sounds, moves arms. The magic of myth and legend has



8 The Tar Pit

come true in our time. One types the correct incantation on a

keyboard, and a display screen comes to Hfe, showing things that

never were nor could be.

Programming then is fun because it gratifies creative longings

built deep within us and delights sensibilities we have in common
with all men.

The Woes of the Craft

Not all is delight, however, and knowing the inherent woes makes

it easier to bear them when they appear.

First, one must perform perfectly. The computer resembles the

magic of legend in this respect, too. If one character, one pause, of

the incantation is not strictly in proper form, the magic doesn't

work. Human beings are not accustomed to being perfect, and few

areas of human activity demand it. Adjusting to the requirement

for perfection is, 1 think, the most difficult part of learning to

program.^

Next, other people set one's objectives, provide one's re-

sources, and furnish one's information. One rarely controls the

circumstances of his work, or even its goal. In management terms,

one's authority is not sufficient for his responsibility. It seems that

in all fields, however, the jobs where things get done never have

formal authority commensurate with responsibility. In practice,

actual (as opposed to formal) authority is acquired from the very

momentum of accomplishment.

The dependence upon others has a particular case that is espe-

cially painful for the system programmer. He depends upon other

people's programs. These are often maldesigned, poorly imple-

mented, incompletely delivered (no source code or test cases), and

poorly documented. So he must spend hours studying and fixing

things that in an ideal world would be complete, available, and

usable.

The next woe is that designing grand concepts is fun; finding

nitty little bugs is just work. With any creative activity come



The Woes of the Craft

dreary hours of tedious, painstaking labor, and programming is no

exception.

Next, one finds that debugging has a Unear convergence, or

worse, where one somehow expects a quadratic sort of approach

to the end. So testing drags on and on, the last difficult bugs taking

more time to find than the first.

The last woe, and sometimes the last straw, is that the product

over which one has labored so long appears to be obsolete upon

(or before) completion. Already colleagues and competitors are in

hot pursuit of new and better ideas. Already the displacement of

one's thought-child is not only conceived, but scheduled.

This always seems worse than it really is. The new and better

product is generally not available when one completes his own; it

is only talked about. It, too, will require months of development.

The real tiger is never a match for the paper one, unless actual use

is wanted. Then the virtues of reality have a satisfaction all their

own.

Of course the technological base on which one builds is always

advancing. As soon as one freezes a design, it becomes obsolete in

terms of its concepts. But implementation of real products de-

mands phasing and quantizing. The obsolescence of an implemen-

tation must be measured against other existing implementations,

not against unrealized concepts. The challenge and the mission are

to find real solutions to real problems on actual schedules with

available resources.

This then is programming, both a tar pit in which many efforts

have floundered and a creative activity with joys and woes all its

own. For many, the joys far outweigh the woes, and for them the

remainder of this book will attempt to lay some boardwalks across

the tar.


