
CS207 Software Design 

Agile & Scrum 



What is software engineering? 
• A systematic, disciplined, quantifiable approach to 

development 
– We attempt to formalize software development in order to 

develop best practices to ensure quality and consistency 

– Structural engineers are responsible if their bridge falls 
apart – we want the same accountability for software 
developers 

• Recognizing problems that are already solved and 
applying known solutions can ensure a higher level of 
consistency 
– We do not always need to reinvent the wheel 



Software Engineering Components 

• Requirements analysis 

• Design 

• Construction 

• Testing 

• Validation 

• Maintenance 



The early days of software 
development 

• In the early days, the cost of developing 
software was relatively small compared to the 
hardware cost 

• The software was offered for free to the 
customers who purchased the computing 
equipment 



Issues today 
• Large software projects cost tens of millions (or even 

hundreds of millions) of dollars to produce, employing 
hundreds of developers, and other team members of 
all sorts 

• Keeping this massive projects on-time and on-budget 
has become a huge priority, and for the most part a 
huge nightmare 

• Companies are less willing to take risks and innovate 
since they are not guaranteed a success in the market 

• Developers are expected to work long hours, putting 
their health and other factors at risk 



From lone wolf to team member 

• Initially, software was often written by a single 
developer 

• As software became more complex there 
became a need to scale and grow out teams of 
people to work on a single property 

• Increased budgets / risk caused companies to 
start finding ways to try and minimize these 
potential pitfalls 



Reducing the risk 
• To reduce the risk, many companies adopted waterfall-style 

methodologies used by other industries. 
• Waterfall methodology employed the idea of developing a large 

software project through a series of phases. 
• Each phase lead to a subsequent phase more expensive than the 

previous. 
• The initial phases consisted of writing plans about how to build the 

software. 
• The software was written in the middle phase. 
• The final phase was integrating all the software components and 

testing the software. Each phase was intended to reduce risk before 
moving on to more expensive phases. 



The waterfall model 



Waterfall continued 

• Each phase is more expensive than the 
previous 
– More time spent in the earlier phases translates to 

savings later on down the line 

• Projects should not return to a previous stage 
once they have moved on 
– Extremely linear and rigid 

– Does not allow for many revisions or change 
things not considered in the design phase 

 



Why old methodologies failed 
• The mains reason is the so-called “cognitive friction” – the 

resistance encountered by a human intellect when engaged with a 
complex system of rules that change as the problem changes. 

• Example: violin is a complex instruments but never enters a “meta-
state” in which various inputs make is sound like a piano or bell. 
Although violin’s behaviour is complex, it is predictable. 

• On a computer screen, everything is filled with cognitive friction. 
Even a simple interface as www presents the user with a more 
intense mental engagement because all you can do is click on a 
hyperlink, but what the link points to can change independently of 
the pointer without any outward indication. 

• So the hyperlink’s function is actually a hyperfunction! 



What goes wrong? 

• Unachievable ship date (features keep 
changing during development) 

• Going into production too soon 

• Adding people late to the project (count how 
much time do new people to come up to 
speed!) 
– Fred Brooks law 

• Underestimating technical challenges 

 



Early alternatives – spiral model 



Alternative Methodologies 
• As companies began to realize that the waterfall 

method was failing them (large projects were 
failing completely or going way over budget) 
alternatives were sought 

• A gradual trend was in methods that used an 
incremental development of product using 
iterations (almost like smaller waterfalls) 
– Iterations could be only a few weeks, but still included 

the full cycle of analysis, design, coding, etc. 

• These various lightweight development methods 
were later referred to as agile methodologies 



Agile Manifesto 

• We value: 
– Individuals and interactions over processes and 

tools 

– Working software over comprehensive 
documentation 

– Customer collaboration over contract negotiation 

– Responding to change over following a plan 

– (there is value to the items on the right, but the 
left is valued more) 



Agile frameworks 
• Agile refers to a number of different frameworks that share 

these values: 
– Extreme programming (XP) (advocates frequent "releases" in 

short development cycles, which is intended to improve 
productivity and introduce checkpoints at which new customer 
requirements can be adopted; also programming in pairs) 

– Scrum (a flexible, holistic product development strategy where a 
development team works as a unit to reach a common goal) 

– Lean software development: 
• Eliminate waste, amplify learning, decide as late as possible, deliver as 

fast as possible, empower the team, build flexibility in, see the whole 



Why use Agile? 

• Demand for higher quality, with lower cost 

• Post-mortems of various projects lead to a lot 
of knowledge gain about what went right / 
wrong during the development phase 
– With the waterfall model, we do not have a clear 

way to predict the future, so these lessons are 
always in hindsight 

– Smaller, iterative schedules mean problems can be 
identified / address much earlier in the cycle 



Using iterative development 

• Iterative design means we build a product in 
small steps 

– Incrementally add features 

– Software is in working condition at least every few 
weeks 

– Allows people to test earlier in the development 
cycle 





Agile Team Management 
• From the bottom up 
• Teams are empowered to manage the smallest 

level of details, while leaving the higher levels to 
upper management 

• Teams upon seeing the small amount of 
ownership they get from solving smaller 
problems take on responsibility for larger 
problems  
– Head off issues before they become major problems 
– Individuals solve problem with their colleagues 



An Agile Project 

• An agile project consists of a series of 
iterations of development 

• Each interval usually lasts only two to four 
weeks 

• Developers implement features during each 
iteration that add value to the project 

– The features are called user stories 

 



Iterations 

• Each iteration contains a full development cycle 

– Analysis 

– Design 

– Coding 

– Testing 

• The product is reviewed at the end of each 
iteration 

– Results are used to direct future iterations 



Iterations 



Sprints 

• In traditional agile development (outside of 
the game industry) software is brought to 
release level every few months 

– They use releases, which are sets of sprints, to 
produce shippable versions of their products 

• Agile projects use these sprints as milestones 
for deliverables such as “near shippable” 



Scrum 



Scrum 
• Scrum is mainly about the management of software 

development projects 

• Sprint 
– Basic unit of development in a scrum 

– Fixed-length – typically from one week to a month 

– Each sprint begins with a planning meeting to determine 
the tasks for the sprint and estimates are made 

– During each sprint a potentially deliverable product is 
produced 
• Features are pulled from a product backlog – a prioritized set of 

high-level work requirements 



Scrum 
• During a sprint, there are daily scrum meetings 

– Daily scrum or daily standup 
– No more than 15 minutes 
– Meeting must start on-time, and happen at the same 

location 
– Each member answers the following: 

• What have you done since yesterday? 
• What are you planning on doing today? 
• Any impediments or stumbling blocks? 

– A scrum master will handle resolving any impediments 
outside of this meeting 



Key features of a scrum 

• During a project a customer may change their 
minds about what they want / need 

– Accepts that the problem cannot be fully 
understood or defined, instead allows teams to 
delivery quickly and respond to changes in a 
timely manner 

 



What  is Scrum? 
• A framework for creating complex products 

• Creates an incremental and interactive 
development process 

• Is self-managing 

• Uses cross-disciplined teams 

• An ever-changing, never-ending pursuit of 
improvement 

• Consists of simple rules, but these rules vastly 
improve how teams work together 

 



What scrum is not 

• It is not a processor or methodology 

• It is not specific enough to tell programmers, 
artists, QA, producers, etc. how to do their 
jobs 

– Companies merge their own practices into the 
scrum framework to create a new methodology 

 



Process 
• Software development, using scrum, progresses 

in two to four week iterations called sprints 
– Teams are generally 6-10 people in size and consist of 

a range of disciplines (not just programming) 

• Sprints start with a sprint planning meeting 
– Each team selects a set of features from the product 

backlog – a prioritized list of features, each feature is 
referred to as a product backlog item (PBI) 

– The team creates time estimates for each PBI to 
create a sprint backlog 

– Teams only select features that they believe are 
achievable 
 
 



Process continued 
• Teams have daily 15-minute meetings (called the daily 

scrum) 
– Progress and any impediments to work are shared 
– Meetings are strictly limited to 15 minute timeboxes, 

regardless of whether or not the agenda is met 

• At the end of a sprint, a potentially shippable version 
of the software has been created 
– Stakeholders (to be defined later) have a sprint review 

meeting to determine if the goals of the sprint were met 
and make adjustments as needed to the product backlog 

• There may also be a sprint retrospective – sort of like a 
mini post-mortem  



Scrum Principles 
• Although scrum practices will evolve and be adapted to suit 

each individual team / project, a number of core principles 
should be upheld: 
– Empiricism: inspect and adapt – respond to emerging changes 
– Emergence: we can’t know everything about a design at the start, 

so we can capitalize on a emerging features as they become 
apparent 

– Timeboxing: scrum delivers value on a regular basis, allows project 
to be synchronized and micro-steered throughout 

– Prioritization: some features are more important to stakeholders 
than others. Features are developed based on their value 

– Self-organization: small, cross-disciplined teams are given power to 
organize their membership, manage processes and create the best 
possible product within timeboxes 



Product Backlog 

• Prioritized list of requirements (called PBI’s) 

• The product backlog can change after each 
sprint 

– New PBI’s that weren’t thought of can be added  

– PBI’s that are no longer needed can be removed 

– Priorities can be updated 



Sprints 
• The overall objective of a sprint is called the sprint goal 

– Sprint goals remains unchanged throughout the sprint 

– At the end of a sprint the stakeholders are shown a new 
version of the game which demonstrates the sprint goal 

• Sprints produce vertical slices of functionality 
– Each sprint contains design, coding, testing, debugging and 

optimization 

• Many features will require multiple sprints to develop 
– Each sprint must still demonstrate value 

– Allows for uncertainty or risk to be removed from the 
project as early as possible 

 



Scaling Scrum 

• Scrum teams should have less than a dozen 
members 

• Larger teams are supported through scaling 

– A number of Scrum teams work in parallel 

– Work is coordinated through practices like the 
scrum of scrums 



Sprint basic rules 

• Sprint are timeboxed, usually two to four 
weeks in length 

• The team commits to completing a print goal 

• No additions or changes are made by anyone 
outside the team 



Sprint Planning 

• A the beginning of a sprint, teams meet with 
stakeholder to plan the next sprint over two 
meetings: 

– Sprint prioritization meeting 

– Sprint planning meeting 


