¥ | UNIVERSITY OF

4]

~» TORONTO

Agile & Scrum



UNIVERSITY OF

% TORONTO

What is software engineering?

e A systematic, disciplined, quantifiable approach to
development

— We attempt to formalize software development in order to
develop best practices to ensure quality and consistency

— Structural engineers are responsible if their bridge falls
apart — we want the same accountability for software
developers

* Recognizing problems that are already solved and
applying known solutions can ensure a higher level of
consistency

— We do not always need to reinvent the wheel



UNIVERSITY OF

» TORONTQ

* Construction
* Testing

e Validation

* Maintenance



UNIVERSITY OF

% TORONTO

The early days of software
development

* |In the early days, the cost of developing
software was relatively small compared to the
hardware cost

* The software was offered for free to the
customers who purchased the computing
equipment



UNIVERSITY OF

% TORONTO

Issues today

e Large software projects cost tens of millions (or even
hundreds of millions) of dollars to produce, employing
hundreds of developers, and other team members of
all sorts

* Keeping this massive projects on-time and on-budget
has become a huge priority, and for the most part a
huge nightmare

 Companies are less willing to take risks and innovate
since they are not guaranteed a success in the market

* Developers are expected to work long hours, putting
their health and other factors at risk



UNIVERSITY OF

% TORONTO

From lone wolf to team member

* |nitially, software was often written by a single
developer

* As software became more complex there
became a need to scale and grow out teams of
people to work on a single property

* Increased budgets / risk caused companies to
start finding ways to try and minimize these
potential pitfalls



UNIVERSITY OF

% TORONTO

Reducing the risk

* To reduce the risk, many companies adopted waterfall-style
methodologies used by other industries.

* Waterfall methodology employed the idea of developing a large
software project through a series of phases.

* Each phase lead to a subsequent phase more expensive than the
previous.

 The initial phases consisted of writing plans about how to build the
software.
 The software was written in the middle phase.

* The final phase was integrating all the software components and
testing the software. Each phase was intended to reduce risk before
moving on to more expensive phases.



UNIVERSITY OF

e
%) TORONTC

Sorcwzrs

Implementation

Verification

‘ Maintenance I




UNIVERSITY OF

% TORONTO

Waterfall continued

* Each phase is more expensive than the
previous
— More time spent in the earlier phases translates to
savings later on down the line
* Projects should not return to a previous stage
once they have moved on
— Extremely linear and rigid

— Does not allow for many revisions or change
things not considered in the design phase



UNIVERSITY OF

% TORONTO

Why old methodologies failed

* The mains reason is the so-called “cognitive friction” — the
resistance encountered by a human intellect when engaged with a
complex system of rules that change as the problem changes.

 Example: violin is a complex instruments but never enters a “meta-
state” in which various inputs make is sound like a piano or bell.
Although violin’s behaviour is complex, it is predictable.

 On acomputer screen, everything is filled with cognitive friction.
Even a simple interface as www presents the user with a more
intense mental engagement because all you can do is click on a
hyperlink, but what the link points to can change independently of
the pointer without any outward indication.

* So the hyperlink’s function is actually a hyperfunction!



UNIVERSITY OF

% TORONTO

What goes wrong?

* Unachievable ship date (features keep
changing during development)

* Going into production too soon

 Adding people late to the project (count how
much time do new people to come up to
speed!)
— Fred Brooks law

* Underestimating technical challenges



UNIVERSITY OF

TORONTC

L

/)

Evaluate alternatives,

Determine identify, resolve risks

objectives,
alternatives,
constraints

Risk

Commitment

Rewview
partition

Requirements plan
life-cycle plan

validation

Design vafidation
and wverification

Acceptance
lmplameﬂta‘linni fec I

Plan next phases |

Develop, verify
next-level product



UNIVERSITY OF

% TORONTO

Alternative Methodologies

 As companies began to realize that the waterfall
method was failing them (large projects were
failing completely or going way over budget)
alternatives were sought

* A gradual trend was in methods that used an
incremental development of product using
iterations (almost like smaller waterfalls)

— |terations could be only a few weeks, but still included
the full cycle of analysis, design, coding, etc.

* These various lightweight development methods
were later referred to as agile methodologies



UNIVERSITY OF

% TORONTO

Agile Manifesto

e \We value:

— Individuals and interactions over processes and
tools

— Working software over comprehensive
documentation

— Customer collaboration over contract negotiation
— Responding to change over following a plan

— (there is value to the items on the right, but the
left is valued more)



UNIVERSITY OF

% TORONTO

Agile frameworks

* Agile refers to a number of different frameworks that share
these values:

— Extreme programming (XP) (advocates frequent "releases" in
short development cycles, which is intended to improve
productivity and introduce checkpoints at which new customer
requirements can be adopted; also programming in pairs)

— Scrum (a flexible, holistic product development strategy where a
development team works as a unit to reach a common goal)

— Lean software development:

* Eliminate waste, amplify learning, decide as late as possible, deliver as
fast as possible, empower the team, build flexibility in, see the whole



UNIVERSITY OF

% TORONTO

Why use Agile?

 Demand for higher quality, with lower cost

e Post-mortems of various projects lead to a lot
of knowledge gain about what went right /
wrong during the development phase

— With the waterfall model, we do not have a clear
way to predict the future, so these lessons are

always in hindsight
— Smaller, iterative schedules mean problems can be
identified / address much earlier in the cycle



UNIVERSITY OF

% TORONTO

Using iterative development

* |terative design means we build a product in
small steps
— Incrementally add features

— Software is in working condition at least every few
weeks

— Allows people to test earlier in the development
cycle



UNIVERSITY OF
nn l

¥ TORONTO

'ﬁ

Agile
lifecyele

i

incorporate



UNIVERSITY OF

% TORONTO

Agile Team Management

* From the bottom up

 Teams are empowered to manage the smallest
level of details, while leaving the higher levels to
upper management

e Teams upon seeing the small amount of
ownership they get from solving smaller
problems take on responsibility for larger
problems
— Head off issues before they become major problems
— Individuals solve problem with their colleagues



UNIVERSITY OF

% TORONTO

An Agile Project

* An agile project consists of a series of
iterations of development

* Each interval usually lasts only two to four
weeks

* Developers implement features during each
iteration that add value to the project

— The features are called user stories



UNIVERSITY OF

» TORONTQ

* The product is reviewed at the end of each
iteration

— Results are used to direct future iterations






UNIVERSITY OF

% TORONTO

Sprints

* |n traditional agile development (outside of
the game industry) software is brought to
release level every few months
— They use releases, which are sets of sprints, to

produce shippable versions of their products

* Agile projects use these sprints as milestones
for deliverables such as “near shippable”



L

2 TORONTC

L b
el

Worldng increment
of the software

Product Bacldog Sprint Baclklog




UNIVERSITY OF

% TORONTO

Scrum

e Scrum is mainly about the management of software
development projects

* Sprint
— Basic unit of development in a scrum
— Fixed-length — typically from one week to a month

— Each sprint begins with a planning meeting to determine
the tasks for the sprint and estimates are made

— During each sprint a potentially deliverable product is

produced

* Features are pulled from a product backlog — a prioritized set of
high-level work requirements



UNIVERSITY OF

% TORONTO

Scrum

* During a sprint, there are daily scrum meetings
— Daily scrum or daily standup
— No more than 15 minutes

— Meeting must start on-time, and happen at the same
location

— Each member answers the following:
* What have you done since yesterday?

 What are you planning on doing today?
* Any impediments or stumbling blocks?

— A scrum master will handle resolving any impediments
outside of this meeting



UNIVERSITY OF

% TORONTO

Key features of a scrum

* During a project a customer may change their
minds about what they want / need

— Accepts that the problem cannot be fully
understood or defined, instead allows teams to
delivery quickly and respond to changes in a
timely manner



UNIVERSITY OF

% TORONTO

What is Scrum?

* A framework for creating complex products

* Creates an incremental and interactive
development process

* |s self-managing
e Uses cross-disciplined teams

* An ever-changing, never-ending pursuit of
Improvement

* Consists of simple rules, but these rules vastly
improve how teams work together



UNIVERSITY OF

% TORONTO

What scrum is not

* [t is not a processor or methodology

* |tis not specific enough to tell programmers,
artists, QA, producers, etc. how to do their
jobs

— Companies merge their own practices into the
scrum framework to create a new methodology



UNIVERSITY OF

% TORONTO

Process

e Software development, using scrum, progresses
in two to four week iterations called sprints

— Teams are generally 6-10 people in size and consist of
a range of disciplines (not just programming)
* Sprints start with a sprint planning meeting

— Each team selects a set of features from the product
backlog — a prioritized list of features, each feature is
referred to as a product backlog item (PBI)

— The team creates time estimates for each PBI to
create a sprint backlog

— Teams only select features that they believe are
achievable



UNIVERSITY OF

% TORONTO

Process continued

 Teams have daily 15-minute meetings (called the daily
scrum)

— Progress and any impediments to work are shared

— Meetings are strictly limited to 15 minute timeboxes,
regardless of whether or not the agenda is met

e At the end of a sprint, a potentially shippable version
of the software has been created

— Stakeholders (to be defined later) have a sprint review
meeting to determine if the goals of the sprint were met
and make adjustments as needed to the product backlog

 There may also be a sprint retrospective — sort of like a
mini post-mortem



UNIVERSITY OF

% TORONTO

Scrum Principles

e Although scrum practices will evolve and be adapted to suit
each individual team / project, a number of core principles
should be upheld:

Empiricism: inspect and adapt — respond to emerging changes

Emergence: we can’t know everything about a design at the start,
SO we can capitalize on a emerging features as they become
apparent

Timeboxing: scrum delivers value on a regular basis, allows project
to be synchronized and micro-steered throughout

Prioritization: some features are more important to stakeholders
than others. Features are developed based on their value

Self-organization: small, cross-disciplined teams are given power to
organize their membership, manage processes and create the best
possible product within timeboxes



UNIVERSITY OF

% TORONTO

Product Backlog

* Prioritized list of requirements (called PBI’s)

* The product backlog can change after each
sprint
— New PBI’s that weren’t thought of can be added
— PBI’s that are no longer needed can be removed
— Priorities can be updated



UNIVERSITY OF

% TORONTO

Sprints

* The overall objective of a sprint is called the sprint goal
— Sprint goals remains unchanged throughout the sprint

— At the end of a sprint the stakeholders are shown a new
version of the game which demonstrates the sprint goal

e Sprints produce vertical slices of functionality
— Each sprint contains design, coding, testing, debugging and
optimization
* Many features will require multiple sprints to develop
— Each sprint must still demonstrate value

— Allows for uncertainty or risk to be removed from the
project as early as possible



UNIVERSITY OF

% TORONTO

Scaling Scrum

e Scrum teams should have less than a dozen
members

e Larger teams are supported through scaling

— A number of Scrum teams work in parallel

— Work is coordinated through practices like the
scrum of scrums



UNIVERSITY OF

% TORONTO

Sprint basic rules

e Sprint are timeboxed, usually two to four
weeks in length

* The team commits to completing a print goal

* No additions or changes are made by anyone
outside the team



UNIVERSITY OF

— Sprint prioritization meeting
— Sprint planning meeting

'E-Frinf i ' ‘:'Srrin'l"
F’Ianm’nﬂ Eeview

E&‘f‘rﬂpap‘f‘ Ive




