
CSC207 - Design Patterns

Ilir Dema

Summer 2016



Design Patterns

I A design pattern is a general description of the solution to a
well-established problem using an arrangement of classes and
objects.

I Patterns describe the shape of code rather than the details.

I Theyre a means of communicating design ideas.

I They are not specific to any one programming language.
I First codified by the Gang of Four in 1995

I Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides

I They are classified in four main groups:
I Creational, Structural, Behavioral, Concurrency.



Design Patterns



Who do we need patterns?

Duck

+quack()
+swim()
+display()
//Other methods

All ducks quack()
and swim(); super-
class takes care of
those; display() is
abstract since all
ducks look different

All ducks quack()
and swim(); super-
class takes care of
those; display() is
abstract since all
ducks look different

MallardDuck

+display()
{ //A mallard duck}

RedheadDuck

+display()
{ //A redhead duck}

Other classes of
ducks ...
Other classes of
ducks ...



A quick change is needed - ducks need to fly!

Duck

+quack()
+swim()
+fly()
+display()
//Other methods

MallardDuck

+display()
{//A mallard duck}

RubberDuck

+quack()
{//Overriden to

//squeak}
+display()
{//A rubber duck}

Every duck can fly
now!
Every duck can fly
now!

RedheadDuck

+display()
{ //A redhead duck}



An attempt to solve the problem

I Override the fly() method in RubberDuck same way we have
already done with quack().

I But what happens if we add a DecoyDuck made of wood?
They are not supposed to fly or quack!

I Which of the folowing are disadvantages of using inheritance to
provide specific Duck behavior? (Chose all that apply).

a. Code is duplicated across subclasses.
b. Runtime behavior changes are difficult.
c. We can’t make a duck dance.
d. Hard to gain knowledge of all duck behaviors.
e. Ducks can’t fly and quack at the same time.
f. Changes can unintentionally affect other ducks.



How about interfaces?

Duck

swim()
display()
//Other methods

�interface�
Flyable

fly()

�interface�
Quackable

quack()

MallardDuck

display()
fly()
quack()

RubberDuck

display()
quack()

RedheadDuck

display()
fly()
quack()

DecoyDuck

display()



The solution

I The use of interfaces solves part of the problem (no flying
rubber ducks), it compleletely destroys reuse of code, creating
a huge maintenace problem.

I This can be addressed by using a design principle:
I Identify the aspects of your application that vary and spearate

them from what stays the same.
I Or, take the parts that vary and encapsulate them so later you

can modifyor extend them without affecting those that don’t.

I Let’s do it:
I The parts of Duck that vary are fly() and quack().
I Pull them out of Duck class and create a new set of classes to

represent each behavior.



More design principles

I Meanwhile we need to keep things flexible, so we might want to
assign a fly behavior to a MallardDuck at instantiation time.

I To successfully do so, we need to program to an interface,
not to an implementation.

I We also need to favour the composition over inheritance.



Separating and implementing duck behaviors
Ecapsulated Fly Behavior

Encapsulated quack behavior

�interface�
FlyBehavior

fly()

FlyWithWings

fly(){//Duck fly}

FlyNoWay

fly(){//No fly}

�interface�
QuackBehavior

quack()

Quack

quack(){//Duck quack}

Squeak

quack()
{//Rubber duck squeak}

MuteQuack

quack()
{No sound}



Duck has a FlyBehavior and a QuackBehavior

Duck

flyBehavior: FlyBehavior
quackBehavior: QuackBehavior

swim()
display()
performQuack()
performFly()
setFlyBehavior()
setQuackBehavior()
//Other duck-like methods ...

MallardDuck

display()
{//mallard}

RubberDuck

display()
{//rubberduck}

RedheadDuck

display()
{//redhead}

DecoyDuck

display()
{//decoy}

Makes use of an
encaplsulated fam-
ily of algorithms
for both flying and
quacking

Makes use of an
encaplsulated fam-
ily of algorithms
for both flying and
quacking



The strategy pattern

I The strategy Pattern defines a family of algorithms,
encaplsulates each one, and makes them interchangeable.

I Strategy lets the algorithm vary independently from clients that
use it.

I For an example, see the solution of the duck problem.
I Exercise:

I A duck call is a device that hunters use to mimic the calls
(quacks) of ducks. How would you implement your own duck
call that does not inherit from the Duck class?



Where are we so far?

I OO Basics
I Abstraction
I Encapsulation
I Polymorphism
I Inheritance

I OO Design Principles
I Encapsulate what varies
I Favor composition over inheritance
I Program to interfaces, no implementations.

I OO Design patterns
I We did see strategy pattern
I We will see a few more in the near future.



Observer Design Pattern

I Problem:
I Need to maintain consistency between related objects.
I Two aspects, one dependent on the other.
I An object should be able to notify other objects without making

assumptions about who these objects are.

I Example - Magazine subscription:
I A magazine publisher goes into business and stars publishing

magazines
I You subscribe to the publisher - every time there is a new issue,

it gets delievred to you, fors as long as you remain a subscriber.
I You unsubsribe when you do not want the magazine anymore.
I Meanwhile the publisher remains in business, other people keep

subscribing and ubsubscribing to its magazine.



CERN open days event

15/08/2013

Reservations to visit the underground facilities are now open. You
have the opportunity to visit one of the LHC experiments (ALICE,
ATLAS, CMS or LHCb), the tunnel of the LHC machine (Radio
Frequency or Accelerator Systems) or the SPS accelerator. Tickets
will be progressively made available over a period of four weeks.

Source: http://opendays2013.web.cern.ch/?page=5



How do I get a ticket?

Well, I did get it the old fashion
way - clicking at their web site at
2am (am European Time).



Observer Pattern UML
�interface�
Observer

+update() : void

�interface�
Observable

+register(o: Observer): void
+unregister(o: Observer): void
+notifyObserver(): void

ConcreteObservable

-observers: Observer[]
-observableState

+register(o: Observer): void
+unregister(o: Observer): void
+notifyObserver(): void
+getState()
+setState(): void

ConcreteObserver

-observerState
-subject: ConcreteObservable

+update(): void

observerState =
observable.getState()
observerState =
observable.getState()

for o: observers
o.update();
for o: observers
o.update();



Observer: Java implementation

�interface�
Observer

+update() : void

Observable

-observers

+addObserver(o: Observer): void
+deleteObserver(o: Observer): void
+hasChanged(): boolean
+setChanged(): void
+clearChanged(): void
+notifyObservers(): void
+notifyObservers(arg: Object): void

YourObservableClass

-state

+getState()
+setState()

YourObserverClass

-observerState

if hasChanged():
for o: observers
o.update(this, arg)

clearChanged()

if hasChanged():
for o: observers
o.update(this, arg)

clearChanged()


