
CSC207 - Review of key concepts

Ilir Dema

Summer 2016



Review Topics

1. Variables and data types

2. Access modifiers

3. Methods and parameter passing

4. Inheritance and abstract classes

5. Collections and generics

6. Interfaces



A sample Java program



Variables and data types

Based on the data type, a variable can belong to a:
I Primitive Data Type:

I boolean, char, byte, short, int, long, float,

double
I A primitive variable is stored on the frame stack of the current

thread (process)
I That means the cell referred by variable name contains the

actual value of the variable

I Reference Data Type:
I Customer (see previous slide - Customer is a custom data type
I Data type declared in some Java package (Scanner,

JFrame,...)
I The cell referred by the reference variable contains the address

of some object on the heap.



Java memory model



Instance variables, local variables, constants

I Based on their location on the code, a variable can be:
I Instance (class) variables
I Local variables
I Parameters (also local variables)

I Paremeters and local variables are visible within the segment of
code where they are declared.

I Class (instance) variables visibility can be changed using access
modifiers.

I Constants do not change throughout the life of the program.
They can be declared using the final keyword:

public final double NUMBER PI = 3.14;



Instance variables, parameters, local variables



Access Modifiers

I Class members (variables/methods) can be declared public,
protected, package-protected, or private.



Static modifier

static modifier is used to declare a class variable or method that
does not depend/need an instance of the class. It can be combined
with access modifiers as needed. Also it is a good idea to make the
constants static.



Passing of parameters by value versus by reference



Inheritance

I Inheritance allows one class to inherit the data and the
methods of another class.

I In a subclass, super refers to the part of the object defined by
the parent class.

I Use super.‘‘attribute’’ to refer an attribute (data member
of method) in the parent class.

I Use super(‘‘arguments’’) to call a constructor defined in
the parent class.

I If the constructor of the parent class is intended to be called,
the super(‘‘arguments’’) must be the first line of code of
the constructor.

I Otherwise the default (no argument) constructor in the parent
class is called.



Collections and Generics

I Often is useful to have implementations of certain Abstract
Data Types (ADT).

I It is desirable that the implementation of the ADTs be
independent of the data type stored in the chosen structure.

I This can be achieved through so called generics - a way of
extending static typing to classes when the exact type of data
the classes will operate on is unknown.

I For example, we may be interested to create Lists of Strings,
Points (recall example from last lecture), etc.

I A type enclosed within angle brackets, for example
ArrayList<T> means the programmer should replace T with
the desired data type.

I Example: ArrayList<Point> polygon = new

ArrayList<Point>();

I Collections are objects that hold other objects.



Java Interfaces

I A java Interface is similar to a Java class
I can include variable declarations
I can include methods

I However
I Variables must be constants
I Methods must be abstract.

I A Java interface cannot be instantiated.

I Apart from applications that we have seen, an interface can
also be used to decouple certain operations from their
implementation.



The Comparable interface

I Often it is desirable to establish an ordering of elements in a
class.

I An ordering relation can be established through a compararison
operation which must satisfy:

I Every two element must be comparable. In addition, the
comparaison must be:

I Reflexive: ∀a : a ≤ a
I Antisymmetric: ∀a, b : a ≤ b ∧ b ≤ a =⇒ a = b
I Transitive: ∀a, b, c : a ≤ b ∧ b ≤ c =⇒ a ≤ c .

I Java offers the Comparable<T> interface that has a single
method:

public int compareTo(T other) which must return:
I A negative integer if this less than other
I Zero of this equals other
I A positive integer if this greater than other


