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Review Topics

1. Variables and data types

2. Access modifiers

3. Methods and parameter passing

4. Inheritance and abstract classes

5. Collections and generics

6. Interfaces



A sample Java program



Variables and data types

Based on the data type, a variable can belong to a:
I Primitive Data Type:

I boolean, char, byte, short, int, long, float,

double
I A primitive variable is stored on the frame stack of the current

thread (process)
I That means the cell referred by variable name contains the

actual value of the variable

I Reference Data Type:
I Customer (see previous slide - Customer is a custom data type
I Data type declared in some Java package (Scanner,

JFrame,...)
I The cell referred by the reference variable contains the address

of some object on the heap.



Java memory model



Instance variables, local variables, constants

I Based on their location on the code, a variable can be:
I Instance (class) variables
I Local variables
I Parameters (also local variables)

I Paremeters and local variables are visible within the segment of
code where they are declared.

I Class (instance) variables visibility can be changed using access
modifiers.

I Constants do not change throughout the life of the program.
They can be declared using the final keyword:

public final double NUMBER PI = 3.14;



Instance variables, parameters, local variables



Access Modifiers

I Class members (variables/methods) can be declared public,
protected, package-protected, or private.



Static modifier

static modifier is used to declare a class variable or method that
does not depend/need an instance of the class. It can be combined
with access modifiers as needed. Also it is a good idea to make the
constants static.



Passing of parameters by value versus by reference



Inheritance

I Inheritance allows one class to inherit the data and the
methods of another class.

I In a subclass, super refers to the part of the object defined by
the parent class.

I Use super.‘‘attribute’’ to refer an attribute (data member
of method) in the parent class.

I Use super(‘‘arguments’’) to call a constructor defined in
the parent class.

I If the constructor of the parent class is intended to be called,
the super(‘‘arguments’’) must be the first line of code of
the constructor.

I Otherwise the default (no argument) constructor in the parent
class is called.



Collections and Generics

I Often is useful to have implementations of certain Abstract
Data Types (ADT).

I It is desirable that the implementation of the ADTs be
independent of the data type stored in the chosen structure.

I This can be achieved through so called generics - a way of
extending static typing to classes when the exact type of data
the classes will operate on is unknown.

I For example, we may be interested to create Lists of Strings,
Points (recall example from last lecture), etc.

I A type enclosed within angle brackets, for example
ArrayList<T> means the programmer should replace T with
the desired data type.

I Example: ArrayList<Point> polygon = new

ArrayList<Point>();

I Collections are objects that hold other objects.



Java Interfaces

I A java Interface is similar to a Java class
I can include variable declarations
I can include methods

I However
I Variables must be constants
I Methods must be abstract.

I A Java interface cannot be instantiated.

I Apart from applications that we have seen, an interface can
also be used to decouple certain operations from their
implementation.



The Comparable interface

I Often it is desirable to establish an ordering of elements in a
class.

I An ordering relation can be established through a compararison
operation which must satisfy:

I Every two element must be comparable. In addition, the
comparaison must be:

I Reflexive: ∀a : a ≤ a
I Antisymmetric: ∀a, b : a ≤ b ∧ b ≤ a =⇒ a = b
I Transitive: ∀a, b, c : a ≤ b ∧ b ≤ c =⇒ a ≤ c .

I Java offers the Comparable<T> interface that has a single
method:

public int compareTo(T other) which must return:
I A negative integer if this less than other
I Zero of this equals other
I A positive integer if this greater than other


