
CSC207 - Java Interfaces

Ilir Dema

Summer 2016



Interfaces

I In computing, an interface is shared boundary across which two
separate components of a computer system exchange
information.

I The exchange of information can be described in terms of
behaviors (i.e. methods).

I None of the systems involved ”cares” how this information is
produced.

I Which means the description of the behaviours has to be
abstract.



Java Interfaces

I A java Interface is similar to a Java class
I can include variable declarations
I can include methods

I However
I Variables must be constants
I Methods must be abstract.

I A Java interface cannot be instantiated.

I We can use an interface to formally specify the logical level of
an ADT:

I It provides a template for classes to fill.

I A separate class then ”implements” it.



Advantages

I We can formally check the syntax of our specification. When
we compile the interface, the compiler uncovers any syntactical
errors in the method interface definitions.

I We can formally verify that the interface contract is met by the
implementation.

I When we compile the implementation, the compiler ensures
that the method names, parameters, and return types match
what was defined in the interface.

I We can provide a consistent interface to applications from
among alternate implementations of the ADT.



Inheritance of interfaces

I A Java interface can extend another Java interface, inheriting
its requirements.

I If interface B extends interface A, then classes that implement
interface B must also implement interface A.

I Usually, interface B adds abstract methods to those required by
interface A.



Example: Stack ADT

Stack: A structure in which elements are added and removed from
only one end; a last in, first out (LIFO) structure



Generic collections

I Collection is an object that holds other objects.
I Typically we want to perform the following operations on a

collection:
I inserting
I removing
I iterating through the contents in a non-destructive fashion.

I A stack is an example of a collection ADT.
I It collects together elements for future use, while maintaining a
”last in, first out” ordering among the elements.

I The particular operations for stacks are:
I push: inserts an element
I pop: removes an element
I top: allows access to the element sitting on top of the stack

I None of these should depend on the data type of the elements
stored in the stack!

I That means stack is a generic collection.



Defining the behaviour of stack abstract methods

I push: insert an element on the top of the stack. The new
element becomes top of the stack.

I We can push an element if the container holding the stack
elements is capable of holding another element.

I What happens if the container is full? We need to throw an
exception!

I Alternatively, we can have an undbounded container. No need
to throw an exception.

I pop: remove an element from top of the stack. If the stack is
empty, we need to throw an exception.

I top: return a reference to the object sitting on top of the
stack. If the stack is empty, we need to throw an exception.



Defining the interfaces

I pop and top behave same way regardless of the nature of the
stack container.

I That means we can define a StackInterface containing
pop() and top(), both throwing StackUnderflow exception

I Next, we can extend this interface in two ways:

UnboundedStackInterface containing a push method
BoundedStackInterface containing a push method that
throws StackOverflow exception.

I Notice the concrete nature of the stack elements is
unimportant at this point.

I However for the purpose of defining the methods, we need a
placeholder for the data type of the stack elements.

I We will parametrize the interface by letting a dummy
parameter denoted by T stand for any data type that we want
to store in our stacks.



The effect of push



The effect of pop



UnboundedStack implementation

I For an unbounded implementation, we need a source of nodes,
capable to hold a reference to a generic data object and a link
to the next node.

I The nodes will be instances of our class Node, member of
support package.

I Our class that implements UnboundedStack interface will be
called LinkedStack since we litellarly will maintain links
between nodes that compose the stack elements.

I We also need to define checked exception class
StackunderflowException.

I Our implementation needs only one class variable top that
points to the top of the stack.

I We will also add a public boolean method isEmpty (an
observer) that returns true if our stack is empty.



Application: well-formed expresssions

I Given a paired set of grouping symbols, determine if the open
and close versions of each symbol are matched correctly.

I Examples: (), [], 〈〉, etc.
I Any number of other characters may appear in the input

expression, before, between, or after a grouping pair, and an
expression may contain nested groupings.

I Each close symbol must match the last unmatched opening
symbol and each open grouping symbol must have a matching
close symbol.



Well-formed expressions algorithm

returns a string indicating the result

instantiate a stack myStack

for each ch in inputString:

if (ch isOpenSymbol) myStack.push(ch)
if (ch isClosingSymbol)

if (myStack.isEmpty()) return ”unbalanced”;
if (ch isNotEqual(ClosingSymbolOf(myStack.top())) return
”unbalanced”;
myStack.pop()

if not(myStack.isEmpty()) return "premature end"

else return "well formed";


