
CSC207 - Arrays, Inheritance, Generic Types

Ilir Dema

Summer 2016



What is an array?

An array is an arrangement of elements of the same type at equally
spaced addresses in computer memory.

Algonquin Radio Observatory

http://www.thothx.ca



Arrays in Java

I An array in Java is not a primitive; it is an object. We can
access its length through its length property.

I To declare an array we use the following syntax:

DataType[] arrayName;

I Remember: Declaring a variable does not create any new
objects.

I An array can be initialized as follows:

arrayName = new DataType[arrayLength];

I One can define multidimensional arrays as arrays of arrays.



Java Collection Framework and Generics

I Arrays are a very simple data structure.

I Often is useful to have implementations of certain Abstract
Data Types (ADT).

I Java’s Colletion Framework provides access to different ADTs.

I It is desirable that the implementation of the ADTs be
independent of the data type stored in the chosen structure.

I This can be achieved through so called generics - a way of
extending static typing to classes when the exact type of data
the classes will operate on is unknown.

I For example, we may be interested to create Lists of Strings,
Points (recall example from last lecture), etc.

I A type enclosed within angle brackets, for example
ArrayList<T> means the programmer should replace T with
the desired data type.

I Example: ArrayList<Point> polygon = new

ArrayList<Point>();



Inheritance Hierarchy in Java

I All classes form a tree called inheritance hierarchy with Object

at the root.

I Class Object does not have a parent. All other Java classes
have a single parent. Multiple inheritance in Java is not
allowed.

I If a class has no parent declared, it is a child of class Object.

I A parent class can have multiple child classes.
I Class Object guarantees that every class inherits the following

methods:

Object(), clone() : Creational methods.
equals(Object), hashCode() : Test equality, compute
object hash.
toString(), finalize(), getClass() : convert instance
to string, handle the destruction of the object, return the class
of the current instance.
Other methods (synchronizing methods).



Inheritance

I Inheritance allows one class to inherit the data and the
methods of another class.

I In a subclass, super refers to the part of the object defined by
the parent class.

I Use super.‘‘attribute’’ to refer an attribute (data member
of method) in the parent class.

I Use super(‘‘arguments’’) to call a constructor defined in
the parent class.

I If the constructor of the parent class is intended to be called,
the super(‘‘arguments’’) must be the first line of code of
the constructor.

I Otherwise the default (no argument) constructor in the parent
class is called.



Multipart objects

Suppose class Child extends class Parent.

An instance of Child has
I a Child part, with all data members and methods of Child
I a Parent part, with all the data members and methods of

Parent
I a GrandParent part, ...etc., all the way up to Object.

An instance of Child can be used anywhere that a Parent is
legal.

I But not the other way around.



Name Lookup

A subclass can resuse a name already used for an inherited
data member or method.

Example: class Player could have a data member name and
so could class Wizard. Or they could both have a method with
signature fight(Player).

When we construct

x = new Wizard("Jenny",500,400,new

String[]{"abracadabra"});
the object has a Player part and a Wizard part.

If we say x.healthPoints or x.fight, we need to know
which one we’ll get!

In other words, we need to know how Java will look up the
name healthPoints or fight inside a Wizard object.



Name lookup rules

For a method call: expression.method(arguments)
I Java looks for method in the most specific, or bottom-most part

of the object referred to by expression.
I It is is not defined there, Java looks ”upward” until it is found

(else it is an error).

For a reference to an instance variable:
expression.variable

I Java determines the type of the expression, and looks in that
box.

I It is is not defined there, Java looks ”upward” until it is found
(else it is an error).



Shadowing and Overriding

Suppose class A and its subclass AChild each have an instance
variable x and an instance method m.

A’s m is overriden by AChild’s m.
I This is often a good idea. We often want to specialize

behaviour in a subclass.

A’s x is shadowed by AChild’s x.
I This is confusing and rarely a good idea.

If a method must not be overriden in a descendant, declare it
final.



Overriding equals()

The equals() method should return true if the two objects
can be considered equal and false otherwise.

Of course, what data is considered equal is up to each
individual class to define.

The equals() method’s signature must be:
I public boolean equals(Object)

The equals() method’s Javadoc declares that it must be:
I Reflexive : an object must always be equal to itself; i.e.,

a.equals(a)
I Symmetric : if two objects are equal, then they should be equal

in both directions; i.e., if a.equals(b), then b.equals(a).
I Transitive: if an object is equal to two others, then they must

both be equal; i.e., if a.equals(b) and b.equals(c), then
a.equals(c).

I Non-null: an object can never be equal to null; i.e.,
a.equals(null) is always false.



Overriding hashCode()

The hash code is just an int calculated from the instance data.

If two instances are considered equal by equals(), then they
must have the same hash code.

Therefore, the hash code can only be computed on those fields
compared in the equals() method.



Casting

I Casting it’s you telling the compiler that an Object of type A is
actually of more specific type B, and thus gaining access to all
the methods on B that you wouldn’t have had otherwise.

I You can also perform casting with primitive data types e.g.
casting a long variable into an int, casting a double variable
into a float, or casting an int variable into char, short and byte
data type. This is known as down-casting in Java.


