Matching Planar Objects In New Viewpoints ... And Much More
– via Homography
What Transformation Happened To My DVD?

- Rectangle goes to a parallelogram

T?
Affine Transformations

Affine transformations are combinations of

- Linear transformations, and
- Translations

\[
\begin{bmatrix}
x' \\
y'
\end{bmatrix} = \begin{bmatrix}
a & b & e \\
c & d & f
\end{bmatrix} \begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\]

Properties of affine transformations:

- Origin does not necessarily map to origin
- Lines map to lines
- Parallel lines remain parallel
- Ratios are preserved
- Closed under composition
- Rectangles go to parallelograms

[Source: N. Snavely, slide credit: R. Urtasun]
What Transformation Really Happened To My DVD?

- What about now?
What Transformation Really Happened To My DVD?

- Actually a rectangle goes to **quadrilateral**
2D Image Transformations

These transformations are a nested set of groups:

- Closed under composition and inverse is a member.

[Source: R. Szeliski]

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Matrix</th>
<th># DoF</th>
<th>Preserves</th>
<th>Icon</th>
</tr>
</thead>
</table>
| translation | \[
\begin{bmatrix} I & t \end{bmatrix}_{2 \times 3}\] | 2 | orientation | |
| rigid (Euclidean)| \[
\begin{bmatrix} R & t \end{bmatrix}_{2 \times 3}\] | 3 | lengths | |
| similarity | \[
\begin{bmatrix} sR & t \end{bmatrix}_{2 \times 3}\] | 4 | angles | |
| affine | \[
\begin{bmatrix} A \end{bmatrix}_{2 \times 3}\] | 6 | parallelism | |
| projective | \[
\begin{bmatrix} \tilde{H} \end{bmatrix}_{3 \times 3}\] | 8 | straight lines | |
Projective Transformations

- **Homography:**

\[
\begin{bmatrix}
 x' \\
 y' \\
 1
\end{bmatrix}
= \begin{bmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{bmatrix}
\begin{bmatrix}
 x \\
 y \\
 1
\end{bmatrix}
\]

- **Properties:**
 - Origin does not necessarily map to origin
 - Lines map to lines
 - Parallel lines do not necessarily remain parallel
 - Ratios are **not** preserved
 - Closed under composition
 - Rectangle goes to quadrilateral
 - Affine transformation is a special case, where \(g = h = 0\) and \(i = 1\)

[Source: N. Snavely, slide credit: R. Urtasun]
For planar objects:

- Viewpoint change for planar objects is a **homography**
- Affine transformation **approximates** viewpoint change for planar objects that are far away from camera
What Transformation Happened to My DVD?

- Why should I care about homography?
- Now that I care, how should I estimate it?
- I want to understand the geometry behind homography. That is, why aren’t parallel lines mapped to parallel lines in oblique viewpoints? How did we get that equation for computing the homography?
Homography

- Why should I care about homography?
 Let’s answer this first

- Now that I care, how should I estimate it?

- I want to understand the geometry behind homography. That is, why aren’t parallel lines mapped to parallel lines in oblique viewpoints? How did we get that equation for computing the homography?
Why do we need homography? Can’t we just assume that the transformation is affine? The approximation on the right looks pretty decent to me...

That’s right. If I want to detect (match) an object in a new viewpoint, an affine transformation is a relatively decent approximation.
Why do we need homography? Can’t we just assume that the transformation is affine? The approximation on the right looks pretty decent to me...

That’s right. If I want to detect (match) an object in a new viewpoint, an affine transformation is a relatively decent approximation.

But for some applications I want to be more accurate. Which?
Why do we need homography? Can’t we just assume that the transformation is affine? The approximation on the right looks pretty decent to me...

That’s right. If I want to detect (match) an object in a new viewpoint, an affine transformation is a relatively decent approximation.

But for some applications I want to be more accurate. Which?
Application 1: a Little Bit of CSI

- Tom Cruise is taking an exam on Monday
Application 1: a Little Bit of CSI

The professor keeps the exams in this office

- Exam is here

- The professor keeps the exams in this office
He enters (without permission) and takes a picture of the laptop screen
His picture turns out to not be from a viewpoint he was shooting for (it’s difficult to take pictures while hanging)

Can he still read the exam?
Warping an Image with a Global Transformation

Transformation T is a coordinate-changing machine:

$$[x', y'] = T(x, y)$$

What does it mean that T is global?

- Is the same for any point p
- Can be described by just a few numbers (parameters)

[Source: N. Snavely, slide credit: R. Urtasun]
Warping an Image with a Global Transformation

- Example of warping for different transformations:

 - Translation
 - Rotation
 - Aspect
 - Affine
 - Perspective
Forward and Inverse Warping

Forward Warping: Send each pixel $f(x)$ to its corresponding location $(x', y') = T(x, y)$ in $g(x', y')$

May leave some holes in the target image.

Inverse Warping: Each pixel at destination is sampled from original image

```
procedure forwardWarp(f, h, out g):
    For every pixel $x$ in $f(x)$
        1. Compute the destination location $x' = h(x)$.
        2. Copy the pixel $f(x)$ to $g(x')$.
```

```
procedure inverseWarp(f, h, out g):
    For every pixel $x'$ in $g(x')$
        1. Compute the source location $x = \hat{h}(x')$
        2. Resample $f(x)$ at location $x$ and copy to $g(x')$
```
Application 1: a Little Bit of CSI

- We want to transform the picture (plane) inside these 4 points into a rectangle (laptop screen)
Application 1: a Little Bit of CSI

Screen resolution is 900×1440

We want it to look like this. How can we do this?
A transformation that maps a projective plane (a quadrilateral) to another projective plane (another quadrilateral, in this case a rectangle) is a homography.

homography H

Screen resolution is 900×1440
If we compute the homography and warp the image according to it, we get this.
If we used affine transformation instead, we’d get this. Would be even worse if our picture was taken closer to the laptop.
Application 1: a Little More of CSI

What is the shape of the b/w floor pattern?

The floor (enlarged)

Automatically rectified floor

Slide from Antonio Criminisi

Homography
Application 1: a Little More of CSI

Slide from Antonio Criminisi

From Martin Kemp *The Science of Art* (manual reconstruction)
Application 1: a Little More of CSI

What is the (complicated) shape of the floor pattern?

St. Lucy Altarpiece, D. Veneziano
Slide from Criminisi

Automatically rectified floor
Application 1: a Little More of CSI

Automatic rectification

From Martin Kemp, *The Science of Art* (manual reconstruction)

Slide from Criminisi
Application 2: How Much do Soccer Players Run?
How many meters did this player run?
Field is planar. We know its dimensions (look on Wikipedia).
Application 2: How Much do Soccer Players Run?

Let's take the 4 corner points of the field
Application 2: How Much do Soccer Players Run?

- We need to compute a homography that maps them to these 4 corners
We need to compute a homography that maps the 4 corners. Any other point from this plane (the field) also maps to the right with the same homography.
Nice. What happened to the players?
Application 2: How Much do Soccer Players Run?

- We can now also transform the player’s trajectory → and we have it in meters!
If we used affine transformation... Our estimations of running would not be accurate!
Application 3: Panorama Stitching

Take a tripod, rotate camera and take pictures

[Source: Fernando Flores-Mangas]
Application 3: Panorama Stitching

[Source: Fernando Flores-Mangas]
Application 3: Panorama Stitching

Each pair of images is related by homography! **If we also moved the camera, this wouldn’t be true (next class)**
To do panorama stitching, we need to:

- Match points between pairs of images I and J
- Compute a transformation between the between matches in I and J: a homography
- Do it robustly (RANSAC)
- Warp the first image to the second using the estimated homography

Apart from the last point, this is exactly the same procedure as for the problem of matching planar objects across viewpoints.

So this should motivate the *why do I care part* of the homographies.
Homography

- Why should I care about homography?
- Now that I care, how should I estimate it? Let’s do this now
- I want to understand the geometry behind homography. That is, why aren’t parallel lines mapped to parallel lines in oblique viewpoints? How did we get that equation for computing the homography?
Solving for Homographies

- Projective mapping between any two projection planes with the same centre of projection
- Let \((x_i, y_i)\) be a point on the reference (model) image, and \((x'_i, y'_i)\) its match in the test image
- A homography \(H\) maps \((x_i, y_i)\) to \((x'_i, y'_i)\):

\[
\begin{bmatrix}
ax'_i \\
ay'_i \\
a
\end{bmatrix} =
\begin{bmatrix}
h_{00} & h_{01} & h_{02} \\
h_{10} & h_{11} & h_{12} \\
h_{20} & h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
x_i \\
y_i \\
1
\end{bmatrix}
\]
Solving for Homographies

- Projective mapping between any two projection planes with the same centre of projection
- Let \((x_i, y_i)\) be a point on the reference (model) image, and \((x'_i, y'_i)\) its match in the test image
- A homography \(H\) maps \((x_i, y_i)\) to \((x'_i, y'_i)\):
 \[
 \begin{bmatrix}
 ax'_i \\
 ay'_i \\
 a
 \end{bmatrix} =
 \begin{bmatrix}
 h_{00} & h_{01} & h_{02} \\
 h_{10} & h_{11} & h_{12} \\
 h_{20} & h_{21} & h_{22}
 \end{bmatrix}
 \begin{bmatrix}
 x_i \\
 y_i \\
 1
 \end{bmatrix}
 \]
- We can get rid of that \(a\) on the left (we need a 2D image):
 \[
 x'_i = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}
 \]
 \[
 y'_i = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}
 \]
Solving for Homographies

- Projective mapping between any two projection planes with the same centre of projection
- Let \((x_i, y_i)\) be a point on the reference (model) image, and \((x'_i, y'_i)\) its match in the test image
- A homography \(H\) maps \((x_i, y_i)\) to \((x'_i, y'_i)\):

\[
\begin{bmatrix}
 ax'_i \\
 ay'_i \\
 a
\end{bmatrix} =
\begin{bmatrix}
 h_{00} & h_{01} & h_{02} \\
 h_{10} & h_{11} & h_{12} \\
 h_{20} & h_{21} & h_{22}
\end{bmatrix}
\begin{bmatrix}
 x_i \\
 y_i \\
 1
\end{bmatrix}
\]

- We can get rid of that \(a\) on the left (we need a 2D image):

\[
x'_i = \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

\[
y'_i = \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}
\]

- Hmmm... Can I still rewrite this into a linear system in \(h\)?
Solving for homographies

From:

\[
\begin{align*}
 x'_i &= \frac{h_{00}x_i + h_{01}y_i + h_{02}}{h_{20}x_i + h_{21}y_i + h_{22}} \\
y'_i &= \frac{h_{10}x_i + h_{11}y_i + h_{12}}{h_{20}x_i + h_{21}y_i + h_{22}}
\end{align*}
\]

We can easily get this:

\[
\begin{align*}
 x'_i (h_{20}x_i + h_{21}y_i + h_{22}) &= h_{00}x_i + h_{01}y_i + h_{02} \\
y'_i (h_{20}x_i + h_{21}y_i + h_{22}) &= h_{10}x_i + h_{11}y_i + h_{12}
\end{align*}
\]

Rewriting it a little:

\[
\begin{align*}
 h_{00}x_i + h_{01}y_i + h_{02} - x'_i (h_{20}x_i + h_{21}y_i + h_{22}) &= 0 \\
h_{10}x_i + h_{11}y_i + h_{12} - y'_i (h_{20}x_i + h_{21}y_i + h_{22}) &= 0
\end{align*}
\]
Solving for homographies

- We can re-write these equations:

\[\begin{align*}
 h_{00}x_i + h_{01}y_i + h_{02} - x'_i (h_{20}x_i - h_{21}y_i - h_{22}) &= 0 \\
 h_{10}x_i + h_{11}y_i + h_{12} - y'_i (h_{20}x_i - h_{21}y_i - h_{22}) &= 0
\end{align*} \]

- as a linear system!

\[
\begin{bmatrix}
 x_i & y_i & 1 & 0 & 0 & 0 & -x'_i x_i & -x'_i y_i & -x'_i \\
 0 & 0 & 0 & x_i & y_i & 1 & -y'_i x_i & -y'_i y_i & -y'_i
\end{bmatrix}
\begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22}
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0
\end{bmatrix}
\]
Solving for homographies

- Taking all our matches into account:

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1 x_1 & -x'_1 y_1 & -x'_1 \\
 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1 x_1 & -y'_1 y_1 & -y'_1 \\
 \vdots \\
 x_n & y_n & 1 & 0 & 0 & 0 & -x'_n x_n & -x'_n y_n & -x'_n \\
 0 & 0 & 0 & x_n & y_n & 1 & -y'_n x_n & -y'_n y_n & -y'_n \\
\end{bmatrix}
\begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22} \\
\end{bmatrix} =
\begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
 0 \\
\end{bmatrix}
\]

\[
A_{2n \times 9} \quad h_{9} \quad 0_{2n}
\]
Solving for homographies

Taking all our matches into account:

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x'_1 \\
 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y'_1 \\
 \vdots \\
 x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n & -x'_n \\
 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n & -y'_n \\
\end{bmatrix}
\begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22} \\
\end{bmatrix} = \begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
\end{bmatrix}
\]

This defines a least squares problem:

\[
\min_h \|Ah\|_2^2
\]
Solving for homographies

- Taking all our matches into account:

\[
\begin{bmatrix}
 x_1 & y_1 & 1 & 0 & 0 & 0 & -x'_1x_1 & -x'_1y_1 & -x'_1 \\
 0 & 0 & 0 & x_1 & y_1 & 1 & -y'_1x_1 & -y'_1y_1 & -y'_1 \\
 \vdots \\
 x_n & y_n & 1 & 0 & 0 & 0 & -x'_nx_n & -x'_ny_n & -x'_n \\
 0 & 0 & 0 & x_n & y_n & 1 & -y'_nx_n & -y'_ny_n & -y'_n \\
\end{bmatrix}
\begin{bmatrix}
 h_{00} \\
 h_{01} \\
 h_{02} \\
 h_{10} \\
 h_{11} \\
 h_{12} \\
 h_{20} \\
 h_{21} \\
 h_{22} \\
\end{bmatrix}
= \begin{bmatrix}
 0 \\
 0 \\
 \vdots \\
 0 \\
\end{bmatrix}
\]

\[
A_{2n \times 9}
\quad
h_{9 \times 2n}
\quad
0
\]

- This defines a least squares problem:

\[
\min_h \|Ah\|_2^2
\]

- Can we use Moore-Penrose like last time?
Solving for homographies Pt. 2

This defines a constrained least squares problem:

\[
\begin{align*}
\min_h E &= \|Ah\|_2^2 \\
\text{s.t.} & \quad \|h\|_2 = 1
\end{align*}
\]

(1)

(2)

Since \(h\) is only defined up to scale, solve for unit vector
This defines a constrained least squares problem:

\[\min_{h} E = \|Ah\|_2^2 \]

\[s.t. \quad \|h\|_2 = 1 \]

(1)

(2)

Since \(h \) is only defined up to scale, solve for unit vector

This is an example of “Constrained” Optimization
This defines a constrained least squares problem:

\[
\begin{align*}
\min_h E &= \|Ah\|_2^2 \\
\text{s.t.} \quad \|h\|_2 &= 1
\end{align*}
\] (1)

(2)

Since \(h \) is only defined up to scale, solve for unit vector

This is an example of “Constrained” Optimization

Method of Lagrange Multipliers
This defines a constrained least squares problem:

\[
\min_h E = \|Ah\|_2^2
\]

s.t. \[\|h\|_2 = 1\] \hspace{1cm} (1)

(2)

Since \(h\) is only defined up to scale, solve for the unit vector.

This is an example of “Constrained” Optimization.

Method of Lagrange Multipliers.

Solution: \(\hat{h} = \text{eigenvector of } A^T A \text{ with smallest eigenvalue}\)
This defines a constrained least squares problem:

$$\min_h E = \|Ah\|^2$$

$$s.t. \quad \|h\|^2 = 1$$ \hspace{1cm} (1) \hspace{1cm} (2)

Since h is only defined up to scale, solve for unit vector

This is an example of “Constrained” Optimization

Method of Lagrange Multipliers

Solution: $\hat{h} = \text{eigenvector of } A^T A$ with smallest eigenvalue

How many matches do I need to estimate H?
This defines a constrained least squares problem:

\[\min_h E = \|Ah\|^2 \]
\[\text{s.t.} \quad \|h\|_2 = 1 \quad (1) \]

Since \(h \) is only defined up to scale, solve for unit vector.

This is an example of “Constrained” Optimization.

Method of Lagrange Multipliers.

Solution: \(\hat{h} = \) eigenvector of \(A^T A \) with smallest eigenvalue.

How many matches do I need to estimate \(H \)?

Works with 4 or more matches, only 8 unknowns!

[Source: R. Urtasun]
Image Alignment Algorithm: Homography

Given images I and J

1. Compute image features for I and J
2. Match features between I and J
Image Alignment Algorithm: Homography

Given images I and J

1. Compute image features for I and J
2. Match features between I and J
3. Compute **homography** transformation A between I and J (with RANSAC)

[Source: N. Snavely]
Panorama Stitching: Example 1

- Compute the matches

[Source: R. Queiroz Feitosa]
Panorama Stitching: Example 1

- Estimate the homography and warp

[Source: R. Queiroz Feitosa]
Panorama Stitching: Example 1

Stitch

[Source: R. Queiroz Feitosa]
Panorama Stitching: Example 2

[Source: Fernando Flores-Mangas]
Panorama Stitching: Example 2

[Source: Fernando Flores-Mangas]
Panorama Stitching: Example 2

Laplacian Pyramid Blending \(\downarrow\) seams not visible anymore

(Brown & Lowe; ICCV 2003) google "Lowe Brown Autostitch"

[Source: Fernando Flores-Mangas]
Summary – Stuff You Need To Know

- A homography is a mapping between projective planes
- You need at least 4 correspondences (matches) to compute it

Matlab functions:

- `TFORM = MAKETFORM('AFFINE', [x1,y1], [x2,y2]);` % Computes affine transformation between points \([x_1, y_1]\) and \([x_2, y_2]\). Needs 3 pairs of matches \((x_1, y_1, x_2, y_2)\) have three rows

- `TFORM = MAKETFORM('PROJECTIVE', [x1,y1], [x2,y2]);` % Computes homography between points \([x_1, y_1]\) and \([x_2, y_2]\). Needs 4 pairs of matches

- `IMW = IMTRANSFORM(IM, TFORM, 'BICUBIC', 'FILL', 0);` % Warps the image according to transformation
Birdseye View on What We Learned So Far

<table>
<thead>
<tr>
<th>Problem</th>
<th>Detection</th>
<th>Description</th>
<th>Matching</th>
</tr>
</thead>
<tbody>
<tr>
<td>Find Planar Distinctive Objects</td>
<td>Scale Invariant Interest Points</td>
<td>Local feature: SIFT</td>
<td>All features to all features + Affine / Homography</td>
</tr>
<tr>
<td>Panorama Stitching</td>
<td>Scale Invariant Interest Points</td>
<td>Local feature: SIFT</td>
<td>All features to all features + Homography</td>
</tr>
</tbody>
</table>
We’re in 2017...

Think not (only) what you can do with one image, but what **lots and lots** of images can do for you
More than one image

- We’re in 2017...

Think not (only) what you can do with one image, but what **lots and lots** of images can do for you

- Would our current matching method work with lots of data?
Big Data

- So far we matched a known object in a new viewpoint.
- What if we have to match an object to **LOTS** of images? Or **LOTS** of objects to one image?
- We’ll discuss this in a few weeks (object recognition).
Next Time:
Camera Models