Image Pyramids
Finding Waldo

- Let’s revisit the problem of finding Waldo
- This time he is on the road
Finding Waldo

- He comes closer but our filter doesn’t know that
- How can we find Waldo?
Idea: Re-size Image

- Re-scale the image multiple times! Do correlation on every size!
This image is huge. How can we make it smaller?
Image Sub-Sampling

- **Idea:** Throw away every other row and column to create a $1/2$ size image

[Source: S. Seitz]
Image Sub-Sampling

- Why does this look so crufty?

[Source: S. Seitz]
Even worse for synthetic images

- I want to resize my image by factor 2
- And I take every other column and every other row (1st, 3rd, 5th, etc)

Figure: Dashed line denotes the border of the image (it’s not part of the image)
Even worse for synthetic images

- I want to resize my image by factor 2
- And I take every other column and every other row (1st, 3rd, 5th, etc)
- Where is the rectangle!

Figure: Dashed line denotes the border of the image (it's not part of the image)
Even worse for synthetic images

- What’s in the image?
- Now I want to resize my image by half in the width direction
- And I take every other column (1st, 3rd, 5th, etc)
Even worse for synthetic images

- What’s in the image?
- Now I want to resize my image by half in the width direction
- And I take every other column (1st, 3rd, 5th, etc)
Even worse for synthetic images

- What’s in the image?
- Now I want to resize my image by half in the width direction
- And I take every other column (1st, 3rd, 5th, etc)
- Where is the chicken!
Image Sub-Sampling

[Source: F. Durand]
Even worse for synthetic images

- What’s happening?

[Source: L. Zhang]
Aliasing

- Occurs when your sampling rate is not high enough to capture the amount of detail in your image

To do sampling right, need to understand the structure of your signal/image

[Source: R. Urtasun]
Aliasing

- Occurs when your sampling rate is not high enough to capture the amount of detail in your image

To do sampling right, need to understand the structure of your signal/image

- The minimum sampling rate is called the Nyquist rate

[Source: R. Urtasun]
Aliasing

- Occurs when your sampling rate is not high enough to capture the amount of detail in your image

To do sampling right, need to understand the structure of your signal/image

- The minimum sampling rate is called the **Nyquist rate**

[Source: R. Urtasun]
Mr. Nyquist

- Harry Nyquist says that one should look at the frequencies of the signal.
- One should find the highest frequency (via Fourier Transform)
- To sample properly you need to sample with at least twice that frequency
- For those interested: http://en.wikipedia.org/wiki/Nyquist%E2%80%93Shannon_sampling_theorem

- He looks like a smart guy, we’ll just believe him
2D example

Good sampling

Bad sampling

[Source: N. Snavely]
Going back to Downsampling ...

- When downsampling by a factor of two, the original image has frequencies that are too high.
- High frequencies are caused by sharp edges.
- How can we fix this?

[Adopted from: R. Urtasun]
Going back to Downsampling ...

- When downsampling by a factor of two, the original image has frequencies that are too high.
- High frequencies are caused by sharp edges.
- How can we fix this?

[Adopted from: R. Urtasun]
Gaussian pre-filtering

- Solution: Filter out the higher frequency data. Blur the image via Gaussian, then subsample. Very simple!
Subsampling with Gaussian pre-filtering

Gaussian 1/2

G 1/4

G 1/8

[Source: S. Seitz]
Compare to our result without

[Source: S. Seitz]
Where is the Rectangle?

- My image

Figure: Dashed line denotes the border of the image (it’s not part of the image)
Where is the Rectangle?

- My image
- Let’s blur

Figure: Dashed line denotes the border of the image (it’s not part of the image)
Where is the Rectangle?

- My image
- Let’s blur
- And now take every other row and column

Figure: Dashed line denotes the border of the image (it’s not part of the image)
Where is the Chicken?

- My image
Where is the Chicken?

- My image
- Let’s blur
Where is the Chicken?

- My image
- Let’s blur
- And now take every other column
Gaussian Pyramids [Burt and Adelson, 1983]

- A sequence of images created with Gaussian blurring and downsampling is called a **Gaussian Pyramid**
- In computer graphics, a **mip map** [Williams, 1983]

How much space does a Gaussian pyramid take compared to original image?

[Source: S. Seitz]
Gaussian Pyramids [Burt and Adelson, 1983]

- A sequence of images created with Gaussian blurring and downsampling is called a **Gaussian Pyramid**
- In computer graphics, a *mip map* [Williams, 1983]

How much space does a Gaussian pyramid take compared to original image?

[Source: S. Seitz]
Example of Gaussian Pyramid

[Source: N. Snavely]
Image Up-Sampling

- This image is too small, how can we make it 10 times as big?

[Source: N. Snavely, R. Urtasun]
Image Up-Sampling

- This image is too small, how can we make it 10 times as big?

- Simplest approach: repeat each row and column 10 times

[Source: N. Snavely, R. Urtasun]
Interpolation

Recall how a digital image is formed

\[F[x, y] = \text{quantize}\{f\left(\frac{x}{d}, \frac{y}{d}\right)\} \]

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]
Recall how a digital image is formed

\[F[x, y] = \text{quantize}\{f\left(\frac{x}{d}, \frac{y}{d}\right)\} \]

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]
Interpolation

Recall how a digital image is formed

\[F[x, y] = \text{quantize}\{f\left(\frac{x}{d}, \frac{y}{d}\right)\} \]

- It is a discrete point-sampling of a continuous function
- If we could somehow reconstruct the original function, any new image could be generated, at any resolution and scale

[Source: N. Snavely, S. Seitz]
Interpolation

What if we don’t know \(f \)?

\[F[x] \]

\[x \]

1 2 3 4 5

1

d = 1 in this example

[Source: N. Snavely, S. Seitz]
Interpolation

What if we don’t know f?

- Guess an approximation: for example nearest-neighbor

[Source: N. Snavely, S. Seitz]
Interpolation

What if we don’t know \(f \)?

- Guess an approximation: for example nearest-neighbor
- Guess an approximation: for example linear

[Source: N. Snavely, S. Seitz]
Interpolation

What if we don’t know f?

- Guess an approximation: for example nearest-neighbor
- Guess an approximation: for example linear
- More complex approximations: cubic, B-splines

[Source: N. Snavely, S. Seitz]
Interpolation

What if we don’t know f?

- Guess an approximation: for example nearest-neighbor
- Guess an approximation: for example linear
- More complex approximations: cubic, B-splines
- But more isn’t always better!

[Source: N. Snavely, S. Seitz]
Linear Interpolation

Linear interpolation from our discretized F:

$$G(x) = \frac{x_2 - x}{x_2 - x_1} F(x_1) + \frac{x - x_1}{x_2 - x_1} F(x_2)$$

$d = 1$ in this example
Interpolation: 1D Example

Let’s make this signal triple length
Interpolation: 1D Example

Let’s make this signal triple length ($d = 3$)

Make a vector G with d times the size of F
Interpolation: 1D Example

Let’s make this signal triple length \((d = 3)\)

If \(i/d\) is an integer, just copy from the signal

\[
\text{if } \frac{i}{d} \text{ integer: } G(i) = F(i/d)
\]
Interpolation: 1D Example

Let’s make this signal triple length \((d = 3)\)

If \(i/d\) is an integer, just copy from the signal

Otherwise use the interpolation formula

\[
G(i) = \frac{x_2 - x}{x_2 - x_1} F(x_1) + \frac{x - x_1}{x_2 - x_1} F(x_2)
\]

where

\[
x = \frac{i}{d} \\
x_1 = \lfloor \frac{i}{d} \rfloor \\
x_2 = \lceil \frac{i}{d} \rceil
\]
Linear Interpolation via Convolution

Linear interpolation:

\[G(x) = \frac{x_2 - x}{x_2 - x_1} F(x_1) + \frac{x - x_1}{x_2 - x_1} F(x_2) \]
Linear Interpolation via Convolution

Linear interpolation:

\[G(x) = \frac{x_2 - x}{x_2 - x_1} F(x_1) + \frac{x - x_1}{x_2 - x_1} F(x_2) \]

In terms of discrete points, what if we want to add one sample between two samples? Make a longer array \(G' \) \((initialized to zeros and F at alternating indices)\)

\[G_{\text{interpolated}}(x_i) = \frac{1}{2} G'(x_{i-1}) + G'(x_i) + \frac{1}{2} G'(x_{i+1}) \]
Linear Interpolation via Convolution

- Linear interpolation:
\[
G(x) = \frac{x_2 - x}{x_2 - x_1} F(x_1) + \frac{x - x_1}{x_2 - x_1} F(x_2)
\]

- In terms of discrete points, what if we want to add one sample between two samples? *Make a longer array* G' (*initialized to zeros and* F *at alternating indices*)

\[
G_{\text{interpolated}}(x_i) = \frac{1}{2} G'(x_{i-1}) + G'(x_i) + \frac{1}{2} G'(x_{i+1})
\]

\[
G_{\text{interpolated}}(x_i) = \begin{bmatrix} \frac{1}{2} & 1 & \frac{1}{2} \end{bmatrix} \ast G'
\]
Let’s make this signal triple length
Interpolation via Convolution: 1D Example

Let's make this signal triple length \((d = 3)\)

\[
\begin{array}{c|c|c|c|c}
F(1) & F(2) & F(3) & F(n)
\end{array}
\rightarrow
\begin{array}{c|c|c|c|c|c|c|c|c|c|c|c}
F(1) & 0 & 0 & F(2) & 0 & 0 & F(3) & 0 & 0 & & & & F(n)
\end{array}
\]

\[
G'(i) = \begin{cases}
F(i/d) & \text{if } \frac{i}{d} \text{ integer} \\
0 & \text{otherwise}
\end{cases}
\]
Let’s make this signal triple length ($d = 3$)

What should be my “reconstruction” filter h (such that $G = h \ast G'$)?
Let’s make this signal triple length \((d = 3)\)

What should be my “reconstruction” filter \(h\) (such that \(G = h \ast G'\))?

\[
h = [0, \frac{1}{d}, \ldots, \frac{d-1}{d}, 1, \frac{d-1}{d}, \ldots, \frac{1}{d}, 0], \text{ where } d \text{ my upsampling factor}
\]
Interpolation via Convolution: 1D Example

Let’s make this signal triple length \((d = 3) \)

What should be my “reconstruction” filter \(h \) (such that \(G = h \ast G' \))?

\[
h = \left[0, \frac{1}{3}, \frac{2}{3}, 1, \frac{2}{3}, \frac{1}{3}, 0 \right]
\]

\[
\frac{2}{3} F(1) + \frac{1}{3} F(2)
\]
Let’s make this signal triple length \((d = 3)\)

What should be my “reconstruction” filter \(h\) (such that \(G = h \ast G'\))?

\[h = [0, \frac{1}{3}, \frac{1}{3}, 1, \frac{2}{3}, \frac{1}{3}, 0] \]

\[\frac{1}{3}F(1) + \frac{2}{3}F(2) \]
Let’s make this signal triple length ($d = 3$)

What should be my “reconstruction” filter h (such that $G = h \ast G'$)?

$h = [0, \frac{1}{d}, \ldots, \frac{d-1}{d}, 1, \frac{d-1}{d}, \ldots, \frac{1}{d}, 0]$, where d my upsampling factor
Interpolation via Convolution (1D)

- **sinc(x)**: "Ideal" reconstruction
- **II(x)**: Nearest-neighbor interpolation
- **Λ(x)**: Linear interpolation
- **gauss(x)**: Gaussian reconstruction

Source: B. Curless
Let’s make this image triple size

Copy image in every third pixel. What about the remaining pixels in G?
Let’s make this image triple size
Copy image in every third pixel. What about the remaining pixels in G?
How shall we compute this value?
Let’s make this image triple size

Copy image in every third pixel. What about the remaining pixels in G?

One possible way: nearest neighbor interpolation
Let’s make this image triple size

Copy image in every third pixel. What about the remaining pixels in G?

Better: bilinear interpolation; linear interpolation in x, then y, resulting in a quadratic interpolation.

Check out details:
http://en.wikipedia.org/wiki/Bilinear_interpolation
Reconstruction Filters

What does the 2D version of this hat function look like?

\[h(x) \]

performs linear interpolation

\[h(x, y) \]

(tent function) performs \textit{bilinear interpolation}
Reconstruction Filters

- What does the 2D version of this hat function look like?

\[
h(x) \quad h(x, y)
\]

performs linear interpolation
(tent function) performs \textbf{bilinear interpolation}

- And filter for nearest neighbor interpolation?
Reconstruction Filters

- What does the 2D version of this hat function look like?

\[h(x) \quad h(x, y) \]

- performs linear interpolation

- (tent function) performs **bilinear interpolation**

- And filter for nearest neighbor interpolation?
Reconstruction Filters

- What does the 2D version of this hat function look like?

\[h(x) \] performs linear interpolation

\[h(x, y) \] (tent function) performs \textit{bilinear interpolation}

- Better filters give better resampled images: Bicubic is a common choice
Let’s make this image triple size: copy image values in every third pixel, place zeros everywhere else.
Image Interpolation via Convolution (2D)

- Let’s make this image triple size: copy image values in every third pixel, place zeros everywhere else.
- Convolution with a reconstruction filter (e.g., bilinear) and you get the interpolated image.
Image Interpolation

Original image

Interpolation results

Nearest-neighbor interpolation Bilinear interpolation Bicubic interpolation

[Source: N. Snavely]
Summary – Stuff You Should Know

- To down-scale an image: blur it with a small Gaussian (e.g., $\sigma = 1.4$) and downsample.
- To up-scale an image: interpolation (nearest neighbor, bilinear, bicubic, etc).
- Gaussian pyramid: Blur with Gaussian filter, downsample result by factor 2, blur it with the Gaussian, downsample by 2...

Matlab functions:

- `fspecial`: creates a Gaussian filter with specified σ
- `imfilter`: convolve image with the filter
- `I(1:2:end, 1:2:end)`: takes every second row and column
- `imresize(image, scale, method)`: Matlab’s function for resizing the image, where `METHOD`=“nearest”, “bilinear”, “bicubic” (works for downsampling and upsampling)