Edge Detection
Finding Waldo

- Let’s revisit the problem of finding Waldo
- And let’s take a simple example
Finding Waldo

- Let’s revisit the problem of finding Waldo
- And let’s take a simple example

normalized cross-correlation

Waldo detection
(putting box around max response)
Now imagine Waldo goes shopping
... but our filter doesn’t know that
Finding Waldo

- Now imagine Waldo goes shopping (and the dog too)
- ... but our filter doesn’t know that

normalized cross-correlation

Waldo detection
(putting box around max response)
Finding Waldo (again)

What can we do to find Waldo again?
Finding Waldo (again)

- What can we do to find Waldo again?

- **Edges!!!**
Finding Waldo (again)

- What can we do to find Waldo again?
- **Edges!!!**

normalized cross-correlation (using the edge maps)

Waldo detection (putting box around max response)
Waldo and Edges
Edge detection

- Map image to a set of **curves** or **line segments** or **contours**.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition

Figure: [Shotton et al. PAMI, 07]

Source: K. Grauman
Edge detection

- Map image to a set of **curves** or **line segments** or **contours**.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

Figure: Parse basketball court (left) to figure out how far the guy is from net
Edge detection

- Map image to a set of **curves** or **line segments** or **contours**.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

Figure: How can a robot pick up or grasp objects?
Edge detection

- Map image to a set of **curves** or **line segments** or **contours**.
- More compact than pixels.
- Edges are invariant to changes in illumination
- Important for recognition
- Important for various applications

Figure: How can a robot pick up or grasp objects?
Edges are caused by a variety of factors:

- Surface normal discontinuity
- Depth discontinuity
- Surface color discontinuity
- Illumination discontinuity

[Source: N. Snavely]
Characterizing Edges

An **edge** is a place of rapid change in the image intensity function.

[Source: S. Lazebnik]
What Causes an Edge?

Reflectance change: appearance information, texture

Change in surface orientation: shape

Depth discontinuity: object boundary

Cast shadows

[Source: K. Grauman]
Images as Functions

- Edges look like steep cliffs

[Source: N. Snavely]
How to Implement Derivatives with Convolution

How can we differentiate a digital image $f[x, y]$?

- If image f was continuous, then compute the partial derivative as

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

Since it's discrete, take first-order forward discrete derivative (finite difference)

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f[x + 1, y] - f[x, y]}{1}$$

What would be the filter to implement this using correlation/convolution?

$$1 -1 -1 \ 1 -1$$

[Source: S. Seitz]
How to Implement Derivatives with Convolution

How can we differentiate a digital image $f[x, y]$?

- If image f was continuous, then compute the partial derivative as
 \[
 \frac{\partial f(x, y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}
 \]

- Since it’s discrete, take first-order forward discrete derivative (finite difference)
 \[
 \frac{\partial f(x, y)}{\partial x} \approx \frac{f[x + 1, y] - f[x, y]}{1}
 \]

What would be the filter to implement this using correlation/convolution?

\[
\begin{array}{ccc}
1 & -1 & -1 \\
1 & & 1
\end{array}
\]

[Source: S. Seitz]
How can we differentiate a digital image $f[x, y]$?

- If image f was continuous, then compute the partial derivative as
 \[
 \frac{\partial f(x, y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}
 \]

- Since it’s discrete, take first-order forward discrete derivative (finite difference)
 \[
 \frac{\partial f(x, y)}{\partial x} \approx \frac{f[x + 1, y] - f[x, y]}{1}
 \]

- What would be the filter to implement this using correlation/convolution?
How can we differentiate a digital image $f[x, y]$?

- If image f was continuous, then compute the partial derivative as
 \[
 \frac{\partial f(x, y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}
 \]

- Since it’s discrete, take first-order forward discrete derivative (finite difference)
 \[
 \frac{\partial f(x, y)}{\partial x} \approx \frac{f[x + 1, y] - f[x, y]}{1}
 \]

- What would be the filter to implement this using correlation/convolution?

[Source: S. Seitz]
Examples: Partial Derivatives of an Image

- How does the horizontal derivative using the filter $[-1, 1]$ look like?

Image
Examples: Partial Derivatives of an Image

- How does the horizontal derivative using the filter $[-1, 1]$ look like?

\[
\frac{\partial f(x, y)}{\partial x} \quad \text{with } [-1, 1] \text{ and correlation}
\]
Examples: Partial Derivatives of an Image

- How about the vertical derivative using filter $[-1, 1]^T$?
Examples: Partial Derivatives of an Image

- How about the vertical derivative using filter $[-1, 1]^T$?

\[
\frac{\partial f(x,y)}{\partial y} \quad \text{with } [-1, 1]^T \quad \text{and correlation}
\]
Examples: Partial Derivatives of an Image

- How does the horizontal derivative using the filter $[-1, 1]$ look like?

![Image]
Examples: Partial Derivatives of an Image

- How does the horizontal derivative using the filter \([-1, 1]\) look like?

\[
\frac{\partial f(x,y)}{\partial x} \text{ with } [-1, 1] \text{ and correlation}
\]
How about the vertical derivative using filter $[-1, 1]^T$?
Examples: Partial Derivatives of an Image

- How about the vertical derivative using filter $[-1, 1]^T$?

\[
\frac{\partial f(x,y)}{\partial y} \text{ with } [-1, 1]^T \text{ and correlation}
\]
Examples: Partial Derivatives of an Image

\[\frac{\partial f(x, y)}{\partial x} \]

\[\frac{\partial f(x, y)}{\partial y} \]

-1 1

-1 1 or 1 -1

Figure: Using correlation filters

[Source: K. Grauman]
Finite Difference Filters

Prewitt: \[M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix} \quad ; \quad M_y = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \]

Sobel: \[M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix} \quad ; \quad M_y = \begin{bmatrix} 1 & 2 & 1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \]

Roberts: \[M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \quad ; \quad M_y = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \]

```matlab
>> My = fspecial('sobel');
>> outim = imfilter(double(im), My);
>> imagesc(outim);
>> colormap gray;
```

[Source: K. Grauman]
Image Gradient

- The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

[Source: S. Seitz]
The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

The gradient points in the direction of most rapid change in intensity.
Image Gradient

- The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

- The gradient points in the direction of most rapid change in intensity

$$\nabla f = [\frac{\partial f}{\partial x}, 0]$$

$$\nabla f = [0, \frac{\partial f}{\partial y}]$$

- The **gradient direction** (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right)$$
The gradient of an image $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$

The gradient points in the direction of most rapid change in intensity

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right]$$

$$\nabla f = [0, \frac{\partial f}{\partial y}]$$

The **gradient direction** (orientation of edge normal) is given by:

$$\theta = \tan^{-1} \left(\frac{\frac{\partial f}{\partial y}}{\frac{\partial f}{\partial x}} \right)$$

The **edge strength** is given by the magnitude $||\nabla f|| = \sqrt{\left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$

[Source: S. Seitz]
Example: Image Gradient

![Image Gradient Example](image-url)
Example: Image Gradient
Example: Image Gradient

[Source: S. Lazebnik]
Effects of noise

- What if our image is noisy? What can we do?
- Consider a single row or column of the image.
- Plotting intensity as a function of position gives a signal.

[Source: S. Seitz]
Effects of noise

- Smooth first with h (e.g. Gaussian), and look for peaks in $\frac{\partial}{\partial x}(h \ast f)$.

[Source: S. Seitz]
Derivative theorem of convolution

- Differentiation property of convolution

\[
\frac{\partial}{\partial x} (h \ast f) = \left(\frac{\partial h}{\partial x} \right) \ast f = h \ast \left(\frac{\partial f}{\partial x} \right)
\]

- From last time, why does this work?
- It saves one operation

[Source: S. Seitz]
2D Edge Detection Filters

Gaussian

\[h_\sigma(x, y) = \frac{1}{2\pi\sigma^2} \exp\left(-\frac{x^2+y^2}{2\sigma^2}\right) \]

Derivative of Gaussian (x)

\[\frac{\partial}{\partial x} h_\sigma(x, y) \]

[Source: N. Snavely]
Derivative of Gaussians

[Source: K. Grauman]
Example

- Applying the Gaussian derivatives to image
Example

- Applying the Gaussian derivatives to image
Effect of σ on derivatives

The detected structures differ depending on the Gaussian’s scale parameter:

- Larger values: detects edges of larger scale
- Smaller values: detects finer structures

[Source: K. Grauman]
Canny Edge Detector

Matlab: edge(image,’canny’)

1. Filter image with derivative of Gaussian (horizontal and vertical directions)
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

[Source: D. Lowe and L. Fei-Fei]
Locating Edges – Canny’s Edge Detector

Let’s take the most popular picture in computer vision: Lena (appeared in November 1972 issue of Playboy magazine)

[Source: N. Snavely]
Locating Edges – Canny’s Edge Detector

Figure: Canny’s approach takes gradient magnitude

[Source: N. Snavely]
Locating Edges – Canny’s Edge Detector

Figure: Thresholding

[Source: N. Snavely]
Locating Edges – Canny’s Edge Detector

Figure: Gradient magnitude

where is the edge?

[Source: N. Snavely]
Non-Maxima Suppression

Check if pixel is local maximum along gradient direction
If yes, take it

Figure: Gradient magnitude

[Source: N. Snavely]
Finding Edges

Figure: Problem with thresholding

Problem: pixels along this edge didn’t survive the thresholding

[Source: K. Grauman]
Hysteresis thresholding

- Use a high threshold to start edge curves, and a low threshold to continue them

[Source: K. Grauman]
Hysteresis thresholding

Hysteresis thresholding is a technique used in image processing to refine the edges detected by thresholding. It works by applying two thresholds: a high threshold for strong edges and a low threshold for weak edges. Edges that are connected to strong edges above the high threshold are preserved, while edges that are not connected to strong edges below the low threshold are removed. This helps to reduce the number of noisy edges and improve the quality of the edge detection.

[Source: L. Fei Fei]
Located Edges!

Figure: Thinning: Non-maxima suppression

[Source: N. Snavely]
Canny Edge Detector

Matlab: `edge(image,’canny’)`

1. Filter image with derivative of Gaussian (horizontal and vertical directions)
2. Find magnitude and orientation of gradient
3. Non-maximum suppression
4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them

[Source: D. Lowe and L. Fei-Fei]
Canny Edge Detector (again)

- large σ (in step 1) detects “large-scale” edges
- small σ detects fine edges

[Source: S. Seitz]
Canny edge detector

- Still one of the most widely used edge detectors in computer vision
- Depends on several parameters: σ of the blur and the thresholds

[Adopted by: R. Urtasun]
Another Way of Finding Edges: Laplacian of Gaussians

- Edge by detecting **zero-crossings** of bottom graph

\[f \]

\[\frac{\partial^2}{\partial x^2} h \]

\[(\frac{\partial^2}{\partial x^2} h) \ast f \]

[Source: S. Seitz]
2D Edge Filtering

with \(\nabla^2 \) the Laplacian operator \(\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} \)

[Source: S. Seitz]
Example

Applying the Laplacian operator to image

\(\sigma = 1 \) pixels \hspace{1cm} \sigma = 3 \) pixels
Applying the Laplacian operator to image

$\sigma = 1 \text{ pixels}$

$\sigma = 3 \text{ pixels}$
Example

$\sigma = 1$ pixels

$\sigma = 3$ pixels

- Applying the Laplacian operator to image
A More ‘Modern’ Approach

This is “old-style” Computer Vision. We are now in the era of successful Machine Learning techniques.

Question: Can we use ML to do a better job at finding edges?
A More ‘Modern’ Approach

This is “old-style” Computer Vision. We are now in the era of successful Machine Learning techniques.

Question: Can we use ML to do a better job at finding edges?

We will see later.
A More ‘Modern’ Approach

This is “old-style” Computer Vision. We are now in the era of successful Machine Learning techniques.

Question: Can we use ML to do a better job at finding edges?

OR Should we see right now?
Summary – Stuff You Should Know

Not so good:

- **Horizontal image gradient**: Subtract intensity of left neighbor from pixel’s intensity (filtering with $[-1, 1]$)
- **Vertical image gradient**: Subtract intensity of bottom neighbor from pixel’s intensity (filtering with $[-1, 1]^T$)

Much better (more robust to noise):

- **Horizontal image gradient**: Apply derivative of Gaussian with respect to x to image (filtering!)
- **Vertical image gradient**: Apply derivative of Gaussian with respect to y to image
- **Magnitude of gradient**: compute the horizontal and vertical image gradients, square them, sum them, and $\sqrt{\text{the sum}}$
- **Edges**: Locations in image where magnitude of gradient is high
- Phenomena that causes edges: rapid change in surface’s normals, depth discontinuity, rapid changes in color, change in illumination
Summary – Stuff You Should Know

- **Properties of gradient’s magnitude:**
 - Zero far away from edge
 - Positive on both sides of the edge
 - Highest value directly on the edge
 - Higher σ emphasizes larger structures

- **Canny’s edge detector:**
 - Compute gradient’s direction and magnitude
 - Non-maxima suppression
 - Thresholding at two levels and linking

Matlab functions:

- `fspecial`: gives a few gradients filters (PREWITT, SOBEL, ROBERTS)
- `smoothGradient`: function to compute gradients with derivatives of Gaussians. Find it in Lecture’s 3 code (Will be posted on class webpage)
- `edge`: use `edge(I, ‘CANNY’)` to detect edges with Canny’s method, and `edge(I, ‘LOG’)` for Laplacian method