Reinforcement Learning

internal state

reward

environment

action

observation

Some slides from:
David Silver, Radford Neal

CSC411/2515: Machine Learning and Data Mining, Winter 2018
Michael Guerzhoy and Lisa Zhang
Reinforcement Learning

• Supervised learning:
 • The training set consists of inputs and outputs. We try to build a function that predicts the outputs from the inputs. The cost function is a *supervision signal* that tells us how well we are doing

• Unsupervised Learning
 • The training set consists of data (just the inputs). We try to build a function that models the inputs. There is no supervision signal

• Reinforcement Learning
 • The *agent* performs *actions* that change the *state* and receives *rewards* that depend on the state
 • Trade-off between exploitation (go to states you already discovered give you high reward) and exploration (try going to states that give even higher rewards)
Reinforcement Learning

- The world is going through a sequence of states \(s_1, s_2, s_3, \ldots, s_n \) and times \(t_1, t_2, \ldots, t_n \)
- At each time \(t_i \), the agent performs action \(a_i \), moves to state \(s_{i+1} \) (depending on the action taken) and receives reward \(r_i \) (the reward could be 0)
- Goal: maximize the total reward over time
 - Total reward: \(r_1 + r_2 + \cdots + r_n \)
 - Total reward with discounting, so that rewards for away in the future count for less: \(r_1 + \gamma r_2 + \gamma^2 r_3 + \cdots + \gamma^{n-1} r_n \)
 - Getting a reward now is better than getting the same reward later on
Reinforcement Learning: Go

AlphaGo defeats Lee Sedol (2016)
Reinforcement Learning: Go

• State: the position on the board
• Reward: 0 if the game hasn’t ended, 1 if the agent wins, -1 if the opponent wins
• Action: make a legal Go move (place a stone on a free point)
• Goal: make a function that, given the state (position on the board), finds an optimal move
 • Note: we could have intermediate goals as well, like learning a function that evaluates every state
• Exploitation vs. Exploration
 • Make moves the function already thinks will lead to a good outcome vs
 • Try making novel moves and see if you discover a way to adjust the function to get even better outcomes
Reinforcement Learning: Walking

https://gym.openai.com/envs/Walker2d-v1
Reinforcement Learning: Walking

• State: the positions of all the joints
• Reward: if we haven’t walked to the destination yet, 0. If we reached the destination, 1
• Action: apply a force to a joint in a particular direction
• Goal: learn a function that applies a particular force to a particular joint at every time-step \(t \) so that the walker reaches the destination
Policy Learning

• A policy function π takes in the current state s, and outputs the move the agent should take
 • Deterministic policy: $a = \pi(s)$
 • Stochastic policy: $\pi(a|s) = P(A_t = a|S_t = s)$
 • Must have for things like playing poker
 • But also good for exploration in general!

• Just like for other functions we approximate, we can parametrize π using a parameter vector θ
 • Initialize θ randomly
 • Follow the policy π_θ, and adjust θ based on the rewards we receive
Softmax Policy (discrete actions)

• Compute features $\phi(a, s)$ for each action-state tuple
 • Some kind of representation that makes sense
 • Could be something very complicated
 • E.g. something computed using a deep neural network
 (similar in spirit to what we did in Project 2)
 • In general, we can think of the features as the last layer of the neural network, before it’s passed into the softmax

• $\pi_\theta(s, a) \propto \exp(\phi(s, a)^T \theta)$
Gaussian Policy (continuous actions)

• For continuous actions, it makes sense to use a Gaussian distribution for the actions, centred around $\phi(s)^T \theta$
• $\alpha \sim N(\phi(s)^T \theta, \sigma^2)$
How good is policy π_θ?

- $V^{\pi_\theta}(s)$ is the (expected) total reward if we start from state s
 - Start from state s at time 0
 - Follow policy π_θ, and compute $r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$
- $q^{\pi_\theta}(a|s)$ is the total expected reward for performing action a in state s, and then following π_θ
 - $V^{\pi_\theta}(s) = \sum_a \pi_\theta(a|s) q^{\pi_\theta}(a|s)$
How good is policy π_θ?

- $d^{\pi_\theta}(s)$ is the probability of the agent being in state s if we follow policy π_θ for a long time
 - Not easily computed at all!
 - But we can simply follow policy π_θ for a long time and record how often we find ourselves in each state
 - For continuous states, do some approximation of that

- $J_{\text{avg}}(\theta) = \sum_s d^{\pi_\theta}(s)V^{\pi_\theta}(s)$
 - $V^{\pi_\theta}(s)$ is the (expected) total reward if we start from state s
 - We want states that lead to high rewards to have high probability
 - We want to take actions that lead to high rewards

- Larger $J_{\text{avg}}(\theta)$ means better θ
Policy Gradient

\[J_{\text{avg}}(\theta) = \sum_s d^{\pi_\theta}(s)V^{\pi_\theta}(s) \]
\[= \sum_s d^{\pi_\theta}(s) \sum_a \pi_\theta(a|s)q^{\pi_\theta}(a|s) \]

\[\nabla J = \left(\frac{\partial J}{\partial \theta_1}, \ldots, \frac{\partial J}{\partial \theta_n} \right) \]

• Idea: \(\theta \leftarrow \theta + \alpha \nabla J(\theta) \)
 • Increase \(J \)
Policy Gradient: Finite Differences

• For each k in $1..n$

$$\frac{\partial J(\theta)}{\partial \theta_k} \approx \frac{J(\theta+u_k)-J(\theta)}{\epsilon}$$

(u_k is all 0’s except the k-th coordinate is ϵ)

• Approximate $J(\theta)$ by following policy π_θ for a while and keeping track of the rewards you get!

• Has actually been used to make physical robots that walk

 • The policy function had about 12 parameters
 • Vary each parameter in turn, have the robot run, measure how fast it ran, and compute the gradient based on that
Policy Gradient Theorem

• $J_{avV}(\theta) = \sum_s d^{\pi_\theta}(s)V^{\pi_\theta}(s)$, so

• $J_{avV}(\theta) = \sum_s d^{\pi_\theta}(s)\sum_a \pi_\theta(a|s)q^{\pi_\theta}(a|s)$
 • $\pi_\theta(a|s)$ is the probability of taking action a starting from state s, following policy $\pi_\theta(a|s)$
 • $q^{\pi_\theta}(a|s)$ is the total expected reward for performing action a in state s, and then following π_θ

• $\nabla_\theta J_{avV}(\theta) = \sum_s d^{\pi_\theta}(s)\sum_a q^{\pi_\theta}(a|s)\nabla_\theta \pi_\theta(a|s)$
 • Not obvious! We are differentiating an expression involving both d^{π_θ} and V^{π_θ}
Policy Gradient Theorem

\[\nabla_\theta J_{avV}(\theta) = \sum_s d^{\pi_\theta}(s) \sum_a q^{\pi_\theta}(a|s) \nabla_\theta \pi_\theta(a|s) \]

- Weighted sum over \(\sum_a q^{\pi_\theta}(s, a) \nabla_\theta \pi_\theta(a|s) \)
- If it looks like we should take action \(a \) in state \(s \) (i.e., \(q^{\pi_\theta}(s, a) \) is high):
 - Care more about \(\nabla_\theta \pi_\theta(a|s) \), which tells us how to change \(\theta \) to make it more likely that we take action \(a \) in state \(s \)
 - Take the weighted average over the gradients for all states, weighing the states that we are more likely to visit more
Policy Gradient: Gaussian Policy

- \(a \sim N(\phi(s)^T \theta, \sigma^2) \)
- \(\nabla_\theta \log \pi_\theta(a|s) = \nabla_\theta \log \exp \left(-\frac{(a-\phi(s)^T \theta)^2}{2\sigma^2} \right) = \)
 \[
 \frac{\nabla_\theta \left((a - \phi(s)^T \theta)^2 \right)}{2\sigma^2} = \frac{(a - \phi(s)^T \theta) \phi(s)}{\sigma^2}
 \]
- (How to make it more likely that we take action \(a \) in state \(s \)?)
- (Aside: \(\nabla \exp(f) = \exp(f) \nabla f \), so \(\nabla \log(f) = (\nabla f)/f \)
Expectation trick

• At time t, starting from state S_t:

\[
\nabla_\theta J_{avV}(\theta) = \sum_s d^{\pi_\theta}(s) \sum_a q^{\pi_\theta}(a|s) \nabla_\theta \pi_\theta (a|s) =
\]

\[
E_{\pi_\theta} \left[\gamma^t \sum_a q^{\pi_\theta}(a|S_t) \nabla_\theta \pi_\theta (a|S_t) \right]
\]

• (Just follow policy π_θ, and in the long term, will encounter states in proportions d^{π_θ})
Expectation trick, again

\[\nabla_{\theta} J_{\text{avg}}(\theta) = E_{\pi_{\theta}} \left[\gamma^{t} \sum_{a} q^{\pi_{\theta}}(a|S_{t}) \nabla_{\theta} \pi_{\theta}(a|S_{t}) \right] \]

\[= E_{\pi_{\theta}} \left[\gamma^{t} \sum_{a} \pi_{\theta}(a|S_{t}) q^{\pi_{\theta}}(a|S_{t}) \frac{\nabla_{\theta} \pi_{\theta}(a|S_{t})}{\pi_{\theta}(a|S_{t})} \right] \]

- Multiply and divide again by \(\pi_{\theta}(a|S_{t}) \)

- Now, replace the sum over actions \(a \) by a single action \(A_{t} \) that we actually take – can do that inside an expectation!

\[= E_{\pi_{\theta}} \left[\gamma^{t} q^{\pi_{\theta}}(A_{t}|S_{t}) \frac{\nabla_{\theta} \pi_{\theta}(A_{t}|S_{t})}{\pi_{\theta}(A_{t}|S_{t})} \right] \]
(Aside)

• $E_{\pi_\theta} [f (A)] = \sum_a \pi_\theta (a) f (a)$

• $E_{\pi_\theta} [f (A)] = E_{\pi_\theta} [E_{\pi_\theta} [f (A)]] = E_{\pi_\theta} [\sum_a \pi_\theta (a) f (a)]$
• $\nabla_{\theta} J_{\text{avg}}(\theta) = E_{\pi_{\theta}} [\gamma^t q^{\pi_{\theta}}(A_t|S_t) \frac{\nabla_{\theta} \pi_{\theta}(A_t|S_t)}{\pi_{\theta}(A_t|S_t)}]$

• Now, replace $q^{\pi_{\theta}}(A_t|S_t)$ by the actual total reward we get by following policy π_{θ}, G_t -- again, can do that inside the expectation

• $\nabla_{\theta} J_{\text{avg}}(\theta) = E_{\pi_{\theta}} \left[\gamma^t G_t \left(\frac{\nabla_{\theta} \pi_{\theta}(A_t|S_t)}{\pi_{\theta}(A_t|S_t)} \right) \right] = E_{\pi_{\theta}} [\gamma^t G_t \nabla_{\theta} \log \pi_{\theta}(A_t|S_t)]$

• Note: $E[G_0] = V^{\pi_{\theta}}(S_0)$
REINFORCE: Intro

• $\nabla_{\theta} J_{\text{adv}}(\theta) = E_{\pi_{\theta}} \left[\gamma^t G_t \frac{\nabla_{\theta} \pi_{\theta}(A_t|S_t)}{\pi_{\theta}(A_t|S_t)} \right] = E_{\pi_{\theta}} [\gamma^t G_t \nabla_{\theta} \log \pi_{\theta}(A_t|S_t)]$

• Intuition: a weighted sum of gradients, with more weight given in situations where we get larger total rewards. We upweight gradients for unlikely actions by dividing by $\pi_{\theta}(A_t|S_t)$, so that we don’t just care about gradients of actions that are currently likely.
REINFORCE

\[\nabla_\theta J_{avV}(\theta) = E_{\pi_\theta} \left[\gamma^t G_t \frac{\nabla_\theta \pi_\theta (A_t|S_t)}{\pi_\theta (A_t|S_t)} \right] \]

- Estimate the expectation by simply following policy \(\pi_\theta \) and recording the rewards you get!

Input: a differentiable policy parameterization \(\pi(a|s, \theta), \forall a \in A, s \in S, \theta \in \mathbb{R}^n \)
Initialize policy weights \(\theta \)
Repeat forever:
 Generate an episode \(S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T \), following \(\pi(\cdot|\cdot, \theta) \)
 For each step of the episode \(t = 0, \ldots, T - 1 \):
 \(G_t \leftarrow \) return from step \(t \)
 \(\theta \leftarrow \theta + \alpha \gamma^t G_t \nabla_\theta \log \pi(A_t|S_t, \theta) \)

- Note: \(G_t \) is the total (discounted) reward starting from time \(t \)
REINFORCE

\[\nabla_\theta J_{\text{adv}}(\theta) = E_{\pi_\theta} \left[\gamma^t G_t \frac{\nabla_\theta \pi_\theta (A_t|S_t)}{\pi_\theta (A_t|S_t)} \right] \]

- Overall idea: follow the policy, if it seems that starting from time \(t \) we’re getting a big reward, make state \(A_t \) more likely
Case Study: AlphaGO

• Go is a remarkably difficult game
 • Lots of possible moves
 • At least $10^{10^{48}}$ possible games
 • Very hard to tell if a position is good or bad
Google Brain’s AlphaGo

• Defeated Lee Sedol, one of the world’s top Go professionals
• The first time a computer program managed to do that
• Highly engineered system with multiple moving parts
AlphaGo’s policy network

• Stage A: a deep convolutional network trained by trying using supervised learning to predict human moves in a game database
 • A ConvNet makes sense since Go “shapes” – configurations of stones – are local, and might be detectable with convolutional layers
• Stage B: use Reinforcement Learning to learn the policy network by making the policy network play against a previous iteration of the policy network
 • Reward: winning a game
 • Train using Policy Gradient
• Use a sophisticated game tree search algorithm together with the Policy Network to actually play the game
Mastering the game of Go without human knowledge

doi:10.1038/nature24270
Download Citation

Received: 07 April 2017
Accepted: 13 September 2017
Published online: 18 October 2017
AlphaGo Zero

• Does not use a database of human moves to train the initial network that evaluates positions

• Does not use “rollouts”
 • At test time, just evaluate all the possible positions one move ahead

• Used $25 million of hardware