Multiclass Classification Done Right

\[\begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \rightarrow \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} \]
One-Hot Encoding

• Data: \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), ... (x^{(n)}, y^{(n)})\)
• E.g., \(y^{(i)} \in \{"person","hamster","capybara"\}\)
• Encode as \(y^{(i)} \in \{1, 2, 3\}\)?
 • Shouldn’t be running something like linear regression, since “hamster” is not really the average of “person” and “capybara,” so things are not likely to work well (Explanation on the board)
• Solution: one-hot encoding
 • “person” => \([1, 0, 0]\)
 • “hamster” => \([0, 1, 0]\)
 • “capybara” => \([0, 0, 1]\)
Multilayer Neural Network for Classification

o_i is large if the probability that the correct class is i is high

A possible cost function:

$$\sum_{i=1}^{m}(o(i) - y(i))^2$$

$y(i)'s$ encoded using one-hot encoding
Softmax

• Want to estimate the probability \(P(y = y' | x, \theta) \)

• \(\theta \): network parameters

\[
p_i = \frac{\exp(o_i)}{\sum_j \exp(o_j)}
\]
Softmax

• \(p_i = \frac{\exp(o_i)}{\sum_j \exp(o_j)} \) can be thought of as probabilities

• \(0 < p_i < 1 \)

• \(\sum_j p_j = 1 \)

• This is a generalization of logistic regression

• (For two outputs, \(p_1 = \frac{\exp(o_1)}{\exp(o_1)+\exp(o_2)} = \frac{1}{1+\exp(o_2-o_1)} \))
Cost Function: \(- \sum_j y_j \log p_j\)

• Likelihood (single training case): \(P(y_j = 1|x, W)\)
 • The probability for \(y_j = 1\) that the network outputs with weights \(w\)

• The likelihood of \(y = (0, \ldots, 0, 1, 0, 0, \ldots, 0)\) is \(p_j\), where \(j\) is the index of the non-zero entry in \(y\)
 • Same as \(\prod_j p_j^{y_j}\)

• Negative log-likelihood (single training case)
 • \(- \sum_j y_j \log p_j\)
Cost Function Gradient

\[p_i = \frac{e^{o_i}}{\sum_j e^{o_j}} \]

\[\frac{\partial p_i}{\partial o_i} = p_i (1 - p_i) \]

\[C = -\sum_j y_j \log p_j \]

\[\frac{\partial C}{\partial o_i} = \sum_j \frac{\partial C}{\partial p_j} \frac{\partial p_j}{\partial o_i} = p_i - y_i \]