Multiclass Classification Done Right

\[
\begin{bmatrix}
0 \\
1 \\
0 \\
0 \\
0
\end{bmatrix} \quad \rightarrow \quad \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
1
\end{bmatrix}
\]

Slides from Geoffrey Hinton

CSC411/2515: Machine Learning and Data Mining, Winter 2018
Michael Guerzhoy and Lisa Zhang
One-Hot Encoding

- Data: \((x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \ldots, (x^{(n)}, y^{(n)})\)
- E.g., \(y^{(i)} \in \{"person", "hamster", "capybara"\}\)
- Encode as \(y^{(i)} \in \{1, 2, 3\}\)?
 - Shouldn’t be running something like linear regression, since “hamster” is not really the average of “person” and “capybara,” so things are not likely to work well (Explanation on the board)
- Solution: one-hot encoding
 - “person” => [1, 0, 0]
 - “hamster” => [0, 1, 0]
 - “capybara” => [0, 0, 1]
Multilayer Neural Network for Classification

o_i is large if the probability that the correct class is i is high

A possible cost function:

$$\sum_{i=1}^{m} |o^{(i)} - y^{(i)}|^2$$

$y^{(i)}$'s encoded using one-hot encoding
Softmax

• Want to estimate the probability $P(y = y' | x, W)$
 • W: network parameters

\[
p_i = \frac{\exp(o_i)}{\sum_j \exp(o_j)}
\]
Softmax

• \(p_i = \frac{\exp(o_i)}{\sum_j \exp(o_j)} \) can be thought of as probabilities
 • \(0 < p_i < 1 \)
 • \(\sum_j p_j = 1 \)
• This is a generalization of logistic regression
 • (For two outputs, \(p_1 = \frac{\exp(o_1)}{\exp(o_1) + \exp(o_2)} = \frac{1}{1 + \exp(o_2 - o_1)} \))
Cost Function: $-\sum_j y_j \log p_j$

- Likelihood (single training case): $P(y_j = 1|x, W)$
 - The probability for $y_j = 1$ that the network outputs with weights w
- The likelihood of $y = (0, \ldots, 0, 1, 0, 0, \ldots, 0)$ is p_j, where j is the index of the non-zero entry in y
 - Same as $\prod_j p_j^{y_j}$
- Negative log-likelihood (single training case)
 - $-\sum_j y_j \log p_j$
Cost Function Gradient

\[p_i = \frac{e^{o_i}}{\sum_j e^{o_j}} \]

\[\frac{\partial p_i}{\partial o_i} = p_i (1 - p_i) \]

\[C = -\sum_j y_j \log p_j \]

\[\frac{\partial C}{\partial o_i} = \sum_j \frac{\partial C}{\partial p_j} \frac{\partial p_j}{\partial o_i} = p_i - y_i \]