Linear Classifiers

Linear Regression of 0/1 Response
Classification vs. Regression

• Classification: for the example \((x_1, x_2, \ldots, x_n)\) predict the label \(y\) (e.g., face recognition)
• Regression: for the example \((x_1, x_2, \ldots, x_n)\) predict a real number \(y\) (e.g., house price prediction)
Classification with two classes

• If there are only two classes, transform, e.g.,

 orange => 1
 blue => 0

 to turn the classification problem into a regression problem

• Find the best

 \[h_\theta(x) = \theta^T x \]

• Predict:

 \[
 \begin{cases}
 1, & h_\theta(x) > 0.5 \\
 0, & otherwise
 \end{cases}
 \]

\[\theta_1 x_1 + \theta_2 x_2 \ (\text{can add in } \theta_0) \]

What is the equation of the decision boundary?
But what about the loss function?

(Loss function = cost function)

What is the equation of the decision boundary?
Attempt #1:

• Quadratic loss, as in Linear Regression.

\[\sum_{i=1}^{m} \left(y^{(i)} - \theta^T x^{(i)} \right)^2 \]

• What is the problem with this loss function?
Attempt #1:

How much does this training data contribute to the loss?

A lot!

Quadratic loss penalizes data well within the decision boundary.
Example in 1D

Even with perfect classification, Loss is still nonzero (and can be high!)
Attempt #2:

• Classification error or 0-1 loss.

\[\sum_{i=1}^{m} I[y^{(i)}, t^{(i)}] \]

• Where I is the indicator function:

\[I[y, t] = \begin{cases}
1, & y = t \\
-1, & otherwise
\end{cases} \]

• What is the problem with this loss function?

Not continuous.
Hard to optimize.
Cannot use gradient descent (Why?
On the board)
Attempt #3:

• Problem with linear regression (quadratic loss): Predictions are allowed to take arbitrary real values!

• Problem with linear regression (0-1 loss): **Hard to optimize**!

• Apply a nonlinearity or activation function: sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$
Sigmoid function
Revised Setup

• If there are only two classes, transform, e.g.,
 orange => 1
 blue => 0
 to turn the classification problem into a regression problem

• Model:
 \(h_\theta(x) = \sigma(\theta^T x) \)

• Where
 \(\sigma(z) = \frac{1}{1 + e^{-z}} \)
Reminder: linear prediction in 1D

Even with perfect classification, Loss is still nonzero (and can be high!)
Example in 1D: applying the sigmoid

Malignant ?

(Yes) 1

(No) 0

Tumor Size
What about the loss?

• Square Loss?

\[J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(y^{(i)} - \sigma(\theta^T x^{(i)}) \right)^2 \]

• On the board:

 • If \(h_\theta(x) = \sigma(\theta^T x) \) is very close to 0 or 1, then the gradient of the loss is close to zero!

 • Why is that a problem?

 • Summary:

\[\nabla J(\theta) = 2(y - \sigma(\theta^T x))\sigma(\theta^T x)(1 - \sigma(\theta^T x))\theta \]
What loss should we use?

- We will use **Cross Entropy Loss**

\[
J(\theta) = \frac{1}{2m} \sum_{i=1}^{m} \left(- \log \sigma(\theta^T x^{(i)}) \right)^{y^{(i)}} (1 - y^{(i)}) \left(- \log(1 - \sigma(\theta^T x^{(i)})) \right)^{1-y^{(i)}}
\]
Why Cross Entropy?

• Where does this come from?
• As in Linear Regression, we will use a probabilistic interpretation
Predictions look like probabilities

Logistic Regression

Malignant ?

(Yes) 1

(No) 0

Tumor Size

Logistic Regression
Logistic Regression

• Assume the data is generated according to

\[y^{(i)} = 1 \text{ with probability } \frac{1}{1 + \exp(-\theta^T x^{(i)})} \]

\[y^{(i)} = 0 \text{ with probability } \frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})} \]

• This can be written concisely as:

\[
\frac{P(y^{(i)}=1|x^{(i)},\theta)}{P(y^{(i)}=0|x^{(i)},\theta)} = \exp(\theta^T x^{(i)})
\]

(odds)
Logistic Regression: Likelihood

- \(P(y^{(i)} = 1|x^{(i)}, \theta) = \left(\frac{1}{1 + \exp(-\theta^T x^{(i)})} \right)^{y^{(i)}} \left(\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})} \right)^{1-y^{(i)}} \)

(just a trick that works because \(y^{(i)} \) is either 1 or 0)

- \(P(y|x, \theta) = \prod_{i=1}^{m} \left(\frac{1}{1 + \exp(-\theta^T x^{(i)})} \right)^{y^{(i)}} \left(\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})} \right)^{1-y^{(i)}} \)

- \(\log P(y|x, \theta) = \Sigma_{i=1}^{m} y^{(i)} \log \left(\frac{1}{1 + \exp(-\theta^T x^{(i)})} \right) + (1 - y^{(i)}) \log \left(\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})} \right) \)
Logistic Regression: Learning and Testing

• Learning: find the θ that maximizes the log-likelihood:

$$\sum_{i=1}^{m} y^{(i)} \log \left(\frac{1}{1 + \exp(-\theta^T x^{(i)})} \right) + (1 - y^{(i)}) \log \left(\frac{\exp(-\theta^T x^{(i)})}{1 + \exp(-\theta^T x^{(i)})} \right)$$

• For x in the test set, compute

$$P(y = 1|x, \theta) = \frac{1}{1 + \exp(-\theta^T x)}$$

• Predict that $y = 1$ if $P(y = 1|x, \theta) > .5$
Logistic Regression: Decision Surface

• Predict \(y = 1 \) if \(\frac{1}{1+\exp(-\theta^T x)} > 0.5 \)
 \[\Leftrightarrow \quad -\theta^T x < 0 \]
 \[\Leftrightarrow \quad \theta^T x > 0 \]

• The decision surface is \(\theta^T x = 0 \), a hyperplane
Logistic Regression

• Outputs the probability of the datapoint’s belonging to a certain class:
 \[y^{(i)} = 1 \text{ with probability } \frac{1}{1+\exp(-\theta^T x^{(i)})} \]
 \[y^{(i)} = 0 \text{ with probability } \frac{\exp(-\theta^T x^{(i)})}{1+\exp(-\theta^T x^{(i)})} \]

 (compare with linear regression)

• Linear decision surface

• Probably the first thing you would try in a real-world setting for a classification task
Decision boundary shapes

\[h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2) \]

Predict \(y = 1 \) if \(-3 + x_1 + x_2 \geq 0\)
Decision boundary shapes
Decision boundary shapes

\[h_\theta(x) = g(\theta_0 + \theta_1 x_1 + \theta_2 x_2 + \theta_3 x_1^2 + \theta_4 x_2^2) \]

Predict \(y = 1 \) if \(-1 + x_1^2 + x_2^2 \geq 0 \)
What is the equation for a good decision boundary?
Multiclass Classification

Email foldering/tagging: Work, Friends, Family, Hobby

\[y = 1 \quad y = 2 \quad y = 3 \quad y = 4 \]

Features: \(x_1 \): 1 if “extension” is in the email, 0 otherwise
\(x_2 \): 1 if “dog” is in the email, 0 otherwise

Medical diagrams: Not ill, Cold, Flu

\[y = 1 \quad y = 2 \quad y = 3 \]

Features: temperature, cough presence, ...
Binary classification:

Multi-class classification:
One-vs-all (one-vs-rest):

Class 1: △
Class 2: □
Class 3: ×

Output the i such that $h_\theta^i(x)$ is the largest
(Idea: a large $h_\theta^i(x)$ means that the classifier is “sure”)

$h_\theta^1(x)$
$h_\theta^2(x)$
$h_\theta^3(x)$