“Success is the only possible outcome”

How to solve hard problems?

- Use a lot of **good AND labelled** training data
- Use a big deep neural network

→ **Success** is the only possible outcome
Supervised learning

• Want to train a model that’s as powerful as possible
 • Good performance on the training set
 • Want a large model with lots of flexibility

• Want the model to generalize
 • Good performance on the test set
 • We saw several techniques: dropout, maximum margin methods, model averaging
Why Deep Networks generalize

• To some extent, this is an open question
• Deep Networks can overfit
• Deep architectures encourage the network to learn hierarchical representations of inputs
• Ensembles of neural networks generally generalize better
Deep Neural Networks

• Can perform a wide range of computation
• Can be learned automatically
 • If you tune them right and use a powerful variant of Stochastic Gradient Descent

 • Powerful but not (computer) learnable: Python
 • Can’t make a learning algorithm that takes lots of inputs and outputs and produces Python code that generates the outputs
 • Learnable but not powerful:
 • Logistic regression
 • Deep Neural Networks that aren’t deep enough

Simpler computer languages are learnable!
Why are Deep Nets Powerful

- A single neuron can approximately implement Boolean logic
- So by combining multiple neurons we can perform any computation
Features as Computation

• Can think of every layer of a neural network as one step of a parallel computation
• Features are the functions that are applied to the previous layers
• Learning features \Leftrightarrow Learning what function to apply at step t of the algorithm
The *Deep Learning Hypothesis*

- Human perception is fast
 - Neurons fire at most 100 times a second
 - Humans can solve simple perceptual tasks in 0.1 seconds
 - So our neurons fire in a sequence of 10 times at most

Anything a human can do in 0.1 seconds, a big 10-layer neural network can do, too!
Unsupervised Learning

• Need lots of data to train a very big network
 • Big network, not enough data → overfitting

• Humans seem to be able learn from very little labelled data
 • Parents do point at things and tell babies what they are called, but that’s not how you learn the meaning of most words!

• If you can do unsupervised learning and figure out good features of the data, you need a lot less labelled data
 • The functions/features are fixed, only need to figure out how to combine them
 • Partial solution: transfer learning. Like in Projects 2, use features learned in one dataset to classify another dataset
“Success is guaranteed”

• Huge amount of progress in supervised learning in recent years
 • With a large enough network, a large enough labelled training set, and a large enough budget for GPUs,
 success is guaranteed

• Unsupervised learning is still very hard
 • Some impressive results with GANs and variational autoencoders!