Generative Adversarial Networks

Some slides from Fei-Fei Li, Justing Johnson, Serena Yeung, and Roger Grosse
Reminder: Autoencoders

- Learn to compute a code that can be used to generate a reconstruction
- The reconstructions are generally blurry
- Try to minimize the squared difference between the input and the reconstruction

![Diagram of an autoencoder network with layers and neurons labeled.](image)
How does the decoder work?

- $W^{(7,i,:)}$ is the i-th template for the image
- The second-to-last layer defines the coefficients for each of the templates
- The code contains information about how to compute those coefficients
 - (For faces) Whose face is it?
 - (For faces) Which way is the person looking?
Example generated images:

- Generated using a variant of autoencoders

 https://www.youtube.com/watch?v=XNZN7Jh3Sg
Why are the outputs blurry for vanilla autoencoders?

• 700 global templates isn’t bad if we want to reconstruct faces 64x64 in size
 • Don’t even need a deep architecture
• 700 global templates is pretty bad if we want to reconstruct large images
 • Want to get the details in the image right
Local & Hierarchical Templates

• Want to start with the code and build up the output images

• Want to build up the image from *local* templates
 • Stitch the images together from plausible image patches instead of averaging global templates
 • Want to output an image of an eye at potentially a lot of locations, just store information about what eyes look like once.

→ Convolutions.
A generator with fractionally-strided convolutions
Partially-strided convolutions

- Can get a 4×4 output from a 2×2 input by zero padding
- A more efficient way of accomplishing the same thing:
 - If a convolution can be computed using $A = CB$ where C is a large matrix (the weights of the convolution kernel arranged so that things work out), we can compute $C^T A$ to get a matrix that has the same size as B
A probabilistic generative model

• To generate a random image
 • Sample \(z \sim N(0, I) \)
 • Each coordinate in \(z \) determines the content of the image
 • Run the \(z \) though the decoder
Training deep autoencoders

- Training deep autoencoders is difficult and doesn’t work very well
- Convolutions and down-sampling means exact location information is lost
- An active research area
Generative Adversarial Nets (GANs)

• Idea: train two networks
 • **Generator network**: try to fool the discriminator by generating real-looking images
 • **Discriminator network**: try to distinguish between real and fake images
Training GANs: Two-Player Game

• Play a minimax game: given that the discriminator will try to do the best job it can, the generator is set to make the discriminator as wrong as possible.
• The discriminator outputs a probability
Training GANs: Two-Player Game

\[
\min_{\theta_g} \max_{\theta_d} \left[E_{x \sim p_{data}} \log D_{\theta_d}(x) + E_{z \sim p(z)} \log (1 - D_{\theta_d}(G_{\theta_g}(z))) \right]
\]

- \(x\) is randomly sampled from the training data. The discriminator wants to output 1.
- \(z\) is randomly sampled, and then a fake image is generated by the generator from the code \(z\). The discriminator wants to output 0.

![Diagram of GANs](image)

\(G_{\theta_g}\)
\(D_{\theta_d}\)
Real or Fake
Real Images (from training set)
Fake Images (from generator)
Random noise
\(z\)
Training GANs: a Two-player game

\[
\min_{\theta_g} \max_{\theta_d} \left[\mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \right]
\]

• Alternate between:
 1. **Gradient ascent** for the discriminator

\[
\max_{\theta_d} \left[\mathbb{E}_{x \sim p_{\text{data}}} \log D_{\theta_d}(x) + \mathbb{E}_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \right]
\]

Do a better job outputting 1 on real images and 0 on fake images

2. **Gradient descent** on the generator

\[
\min_{\theta_g} \mathbb{E}_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right)
\]

Do a better job making sure the discriminator outputs large numbers on fake images
Modifying the cost function

\[
\min_{\theta_g} E_{z \sim p(z)} \log \left(1 - D_{\theta_d} \left(G_{\theta_g}(z) \right) \right)
\]

- Problem: if the generator is doing a bad job and the discriminator knows it, it’s hard to learn from that
 - Modified cost:
 \[
 J = E_{z \sim p(z)} - \log \left(D_{\theta_d} \left(G_{\theta_g}(z) \right) \right)
 \]
 - Now, the generator is doing poorly for code \(z \),
 \[
 \frac{\partial J}{\partial D_{\theta_d}(G_{\theta_g}(z))}
 \]
 is large, so that the update to \(\theta_g \) is large
Training in practice

• Sample real images from the train set to estimate

\[E_{x \sim p_{data}} \log D_{\theta_d}(x) \approx \frac{1}{n} \sum_{i} \log D_{\theta_d}(x^{(i)}) \]

• Sample fake images (by first sampling code \(z \) and then generating images) to estimate

\[E_{z \sim p(z)} - \log \left(D_{\theta_d} \left(G_{\theta_g}(z) \right) \right) \approx - \frac{1}{n} \sum_{j} \log \left(D_{\theta_d} \left(G_{\theta_g}(z^{(j)}) \right) \right) \]

• Can compute the gradients now!
Training GANs

for number of training iterations do
 for k steps do
 • Sample minibatch of \(m \) noise samples \(\{ z^{(1)}, \ldots, z^{(m)} \} \) from noise prior \(p_g(z) \).
 • Sample minibatch of \(m \) examples \(\{ x^{(1)}, \ldots, x^{(m)} \} \) from data generating distribution \(p_{data}(x) \).
 • Update the discriminator by ascending its stochastic gradient:
 \[
 \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^{m} \left[\log D_{\theta_d}(x^{(i)}) + \log(1 - D_{\theta_d}(G_{\theta_g}(z^{(i)}))) \right]
 \]
 end for
 • Sample minibatch of \(m \) noise samples \(\{ z^{(1)}, \ldots, z^{(m)} \} \) from noise prior \(p_g(z) \).
 • Update the generator by ascending its stochastic gradient (improved objective):
 \[
 \nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^{m} \log(D_{\theta_d}(G_{\theta_g}(z^{(i)})))
 \]
end for
Training a GAN

Real samples ⋯ are far away from generated sample distribution — The discriminator probability ⋯ is high for real samples and low for fake samples.
Training a GAN

Real samples …… are far away from generated sample distribution –
The discriminator probability … is high for real samples and low for fake samples
Training a GAN

Real samples …… are close to the generated sample distribution —
The discriminator probability … is high for most real samples but not all and high for some fake samples
Training a GAN

Real samples \cdots are very close to the generated sample distribution –

The discriminator probability \cdots is constant since the discriminator can’t tell real from fake samples
Initial results: Generated Images

Nearest examples from train set

Goodfellow et al. 2014
Convolutional Architecture: Generated images

Radford et al. 2016
Interpolating between random points in latent \((z)\) space

\[z = z_0 \]

\[z = 0.2z_0 + 0.8z_1 \]

\[z = z_1 \]

Radford et al. 2016
Vector Arithmetic in z space

Samples from the model:
- Smiling woman
- Neutral woman
- Neutral man

Average Z vectors, do arithmetic:

Radford et al, ICLR 2016

Smiling Man
Vector arithmetic in z space

Glasses man No glasses man No glasses woman

Radford et al, ICLR 2016

Woman with glasses
GANs in practice

• Difficult to train (VERY difficult!)
• Difficult to numerically see whether there is progress
 • Plotting the “learning curve” (the minmax objective function) doesn’t help too much
 • Like plotting win rate in P4Bonus (Self-play)
 • Both players get better over time
• Difficult to generate globally consistent structure
• But when GANs work, they work fairly well