Suppose we have a function f of two variables. At the point $\left(x_{0}, y_{0}\right)$, what is the vector that points in the direction of steepest ascent?

As discussed in lecture, in order to increase f the most in the neighbourhood of $\left(x_{0}, y_{0}\right)$, we need to move to

$$
\left(x_{0}+\alpha \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)+\alpha \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)\right)
$$

, for some α.
But where do you move along the z axis? Near $\left(x_{0}, y_{0}\right)$, moving x by moves $f(x, y)$ by $h \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)$, and moving y by h movies $f(x, y)$ by $h \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)$. We are doing both of those simoultaneously, and the result is moving f by

$$
\alpha\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)^{2}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)^{2}\right)
$$

The vector is therefore

$$
\left.\left(\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right), \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right)^{2}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right)^{2}\right)\right)^{T} .
$$

