1 Search

1. It would seem that iterative deepening search should have a higher asymptotic time complexity than breadth-first search because every time the depth-bound is increased it must start its search from scratch. However this is not true. Why?

2. If $h()$ is admissible and s is the start node, how is $h(s)$ related to the cost of the solution found by A* search?

3. What happens if we use a heuristic $h()$ in A* search that does not have the guarantee that $h(n) \leq h^*(n)$ for all states n?

4. How do depth-first, breadth-first and depth-first with iterative deepening search compare in terms of their asymptotic time complexity? In terms of their asymptotic space complexity? Please indicate any assumptions you are using (i.e. justifications from the textbook, from other sources, etc).

5. Consider the problem of finding a path in the grid shown below from the position s to the position g. The robot can move on the grid horizontally and vertically, one square at a time (each step has a cost of one). No step may be made into a forbidden shaded area. The search space and the shaded areas are illustrated in Figure 1.

- On the grid, number the nodes in the order in which they are removed from the frontier in a depth-first search from s to g, given that the order of the operators you will test is: up, left, right, then down. Assume there is a cycle check.

- Number the nodes in order in which they are taken off the frontier for an A* search for the same graph. Manhattan distance should be used as the heuristic function. That is, $h(n)$ for any node n is the Manhattan distance from n to g. The Manhattan distance between two points is the distance in the x-direction plus the distance in the y-direction. It corresponds to the distance traveled along city streets arranged in a grid. For example, the Manhattan distance between g and s is 4. What is the path that is found by the A* search?
Suppose that the graph extended infinitely in all directions. That is, there is no boundary, but s, g, and the forbidden area are in the same relative positions to each other. Which search methods would no longer find a path? Would A^*, or would depth-first search? Which would be the better method, and why?