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Game Tree Search
• Chapter 5

– Chapter 5.1, 5.2, 5.3 cover some of the material we cover here.

– Section 5.5 extends the ideas to games with uncertainty (We won’t cover thatmaterial but it makes for interesting reading).

– Section 5.6 has an interesting overview of State-of-the-Art game playing pro-grams.
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Generalizing Search Problem
• So far our search problems have assumed agent has complete control of environment:

– State does not change unless the agent changes it.
– All we need to compute is a single path to a goal state.

• This assumption is not always reasonable:
– Stochastic environment (e.g., the weather, tra�c accidents).
– Other agents whose interests conflict with yours.Search can find a path to a goal state, but the actions might not lead you to thegoal as the state can be changed by other agents.

• We need to generalize our view of search to handle state changes that are not in thecontrol of our agent.
– 2 or more agents;
– All agents acting to maximize their own profits.
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General Games
What makes something a game?

• There are two (or more) agents making changes to the world (the state).
• Each agent has their own interests and goals.Each agent assigns di�erent costs to di�erent paths/states.
• Each agent independently tries to alter the world so as to best benefit itself.
• Co-operation can occur but only if it benefits both parties.

What makes games hard?
• How you should play depends on how you think the other person will play;
• How the other person plays depends on how they think you will play.

Hence, a joint-dependency.
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Properties of Games
• Two player:

Note: Algorithms presented can be extended to multiplayer games, but multi-playergames can involve alliances where some players cooperate to defeat another player(see Chapter 5.2.2)

• Finite: Finite number of states and moves from each state.
– Techniques can be extended to deal with infinite games by applying heuristiccuto�s.
– When the game is too large finite becomes as bad as infinite and heuristic cuto�sneed to be used.

• Zero-sum: Fully competitive, total payo� to all players is constant.If one player gets a higher payo�, the other player gets a lower payo�.
Example: Poker – you win what the other player lose

• Deterministic: No chances involved, no dice, or random deals of cards, or coin flips.
• Perfect Information: All aspects of the state are fully observable.

Example: Chess.
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Game 1: Rock, Paper, Scissors

• Scissors cut paper, paper covers rock, rock smashes scissors
• Represented as a matrix:Player I chooses a row, Player II chooses a column.
• 1: win0: tie-1: loss
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Game 2: Prisoner’s Dilemma
• Two prisoners in separate cells.The sheri� doesn’t have enough evidence to convict them.They agree ahead of time to both deny the crime (they will cooperate).
• If one confesses and the other doesn’t:

– Confessor goes free;
– Other sentenced to 4 years.

• If both confess:
– both sentenced to 3 years.

• If both cooperate (neither confesses):
– both sentenced to 1 year.

Payo�:
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Extensive Form Two-Player Zero-Sum Games

• The previous games are simple "one shot" games.

• Many games extend over multiple moves turn-taking: players act alternatively.
Examples: chess, checkers, etc.
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Two-Player Zero-Sum Game – Definition
A Two-Player Zero-Sum game consists of the following components:

• Two players Max and Min.
• A set of positions P (states of the game).
• A starting position p ∈ P (where game begins).
• A set of Terminal positions T ⊆ P (where game can end).
• A set of directed edges EMax between some positions, representing Max’s moves.
• A set of directed edges EMin between some positions, representing Min’s moves.
• A utility (or payo�) function U : T → R, representing how good each terminal stateis for player Max.

Why don’t we need a utility function for Min?
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Game Tree
• A Game Tree consists of layers reflect alternating moves between Max and Min.
• Root is start state.
• Starting with Max, players alternate moves.
• Game State: a state-player pair, specifies the current state and whose turn it is.
• Game ends when some terminal p ∈ T is reached.
• Utility function and terminals replace goals:

– Terminal nodes t are labeled with utilities U(t).
– Max gets U(t), Min gets −U(t) for terminal node t.
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Game Playing Strategies
• Max wants to maximize the terminal payo�.
• Min wants to minimize the terminal payo�.
• Max doesn’t decide which terminal state is reached alone.After Max moves to a state, Min decides which subsequent state to move to.
• Thus Max must have a strategy:

– Must know what to do for each possible move of Min.
– One sequence of moves will not su�ce: “What to do” will depend on how Minwill play.

CSC384 | University of Toronto 16



Minimax Strategy

• Minimax Strategy: Assuming that the other player will always play its best move, playa move that will minimize the payo� that could be gained by the other player.
• Minimizing the other player’s payo� to maximize yours.

Minimax plays it safe!
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Minimax Strategy

CSC384 | University of Toronto 18















Minimax Strategy:

• Max always plays a move to change the state to the highest valued child.
• Min always plays a move to change the state to the lowest valued child.

If Min plays poorly (does not always move to lowest value child), Max could do better, but
never worse.
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Minimax Strategy
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Minimax Strategy
• We can compute a utility (aka MinMAx value) for the non-terminal states by assumingboth players always play their best move.
• Back the utility values up the tree:

U(s) =



U(s) if s is a terminal (U is defined
(U is defined for all terminals
as part of input)

min{U(c) : c is a child of s} if s is a Min node.
max{U(c) : c is a child of s} if s is a Max node.

• The values U(s) labeling each state s are the values that Max will achieve in that stateif both Max and Min play their best move.
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Example
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Depth-First Implementation of Minimax
• Building the entire game tree and backing up values gives each player their strategy.
• However, the game tree is exponential in size and might be too large to store in mem-ory.
• We can save space by computing the minimax values with a depth-first implementationof minimax.Although run-time complexity is still exponential.
• We run the depth-first search after each move to compute what is the next move forthe MAX player.
• This avoids explicitly representing the exponentially sized game tree: we just computeeach move as it is needed.
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Depth-First Implementation of Minimax
def DFMiniMax(s, Player):
//Return Utility of state s given that Player is MIN or MAX
1. If s is TERMINAL
2. Return U(s) # Return terminal states utility,

# specified as part of game
//Apply Player’s moves to get successor states.
3. ChildList = s.Successors(Player)
4. If Player == MIN
5. return minimum of DFMiniMax(c, MAX) over c ∈ ChildList

6. Else # Player is MAX
7. return maximum of DFMiniMax(c, MIN) over c ∈ ChildList
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Depth-First Implementation of Minimax
• The game tree has to have finite depth for DF Implementation to work.

• We must traverse the entire search tree to evaluate all options.

• Time Complexity: O(bd) (both a BEST and WORSE case scenario), where b is the num-ber of legal moves at each state, and d maximum depth of the tree.

• Space Complexity: O(bd).
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