Question 1. [6 marks]

Part (a) [2 marks]
Consider this schema:

A(orange, popcorn)
B(sugar, tea)
A[orange] \subseteq B[sugar]

Suppose relation A has 17 tuples. Circle the one statement below that is the strongest thing we can be certain of.

1. The number of tuples in relation B must be \(\geq 17 \).
2. The number of tuples in relation B must be \(\leq 17 \).
3. The number of tuples in relation B must be 17.
4. The number of tuples in relation B must be \(\geq 1 \).
5. The number of tuples in relation B must be \(\geq 0 \).

Explain your answer:

Part (b) [4 marks]
Consider this schema and dataset:

C(purple, quince, red)
D(saffron, teal)

\[
\begin{array}{c|c|c|c}
\text{purple} & \text{quince} & \text{red} \\
1 & 2 & 3 \\
1 & 2 & 5 \\
2 & 2 & 5 \\
\end{array}
\]

\[
\begin{array}{c|c|c}
\text{saffron} & \text{teal} \\
2 & 2 \\
5 & 1 \\
2 & 1 \\
\end{array}
\]

D[saffron] \subseteq C[quince]

Does the dataset violate the schema? Circle True or False for each aspect of the schema below. 1 mark for each correct answer, -0.5 for each incorrect answer. The minimum grade for this question is 0.

- It violates the key constraint for relation C. True False
- It violates the key constraint for relation D. True False
- It violates a foreign key constraint. True False
- It violates another constraint. Specify it below: True False
Question 2. [14 marks]

Here is part of the schema from assignment 1. Recall that \(CN \) is an object’s catalogue number, and \(who \) is the Staff person who catalogued it.

Relations

- Object\((CN, date, name, description, type, length, width, height, who)\)
- Donor\((DID, surname, firstname, address, email)\)
- Donation\((NID, date, DID)\)
- Contains\((NID, CN)\)
- Staff\((SID, surname, firstname, address, email, type, date)\)

Integrity constraints

- Object\([who] \subseteq Staff[SID] \)
- Contains\([NID] \subseteq Donation[NID] \)
- Contains\([CN] \subseteq Object[CN] \)
- Donation\([DID] \subseteq Donor[DID] \)

Answer the following questions in relational algebra, using only the basic operators \(\Pi, \sigma, \bowtie, \times, \cap, \cup, -, \rho \).

Part (a) [7 marks]

Find donations that contain exactly two items. Report the donation’s NID and the donor’s email address.

Solution:

\[
Bad(OID) := (\Pi_{OID \text{Offering}}) - (\Pi_{OID \sigma_{\text{grade}=100} Took})
\]

\[
TookBad(SID, OID) := \Pi_{SID,OID}(Took \bowtie Bad)
\]

\[
TwoPlus(SID) := \sigma_{TB1.SID=TB2.SID \land TB1.OID \neq TB2.OID}(\rho_{TB1.TookBad \times TB2.TookBad})
\]

\[
\Pi_{SID}(Students) - TwoPlus
\]
Part (b) [7 marks]

Find the SIDs of staff members who have catalogued at least one object out of each donation from the donor whose DID is 9876. Report simply the SIDs.
Question 3. [11 marks]

Here is part of a schema you used for one of your Lecture Prep exercises.

Relations

• Employee(eid, name, salary, dept)
• Department(did, name, division)
• Sales(eid, day, amount)

Integrity constraints

• Employee[dept] ⊆ Department[did]
• Sales[eid] ⊆ Employee[eid]

Part (a) [2 marks]

Suppose table Sales has this content:

<table>
<thead>
<tr>
<th>eid</th>
<th>day</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2013-11-02</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>2013-11-03</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>2013-11-05</td>
<td>25</td>
</tr>
<tr>
<td>4</td>
<td>2013-11-06</td>
<td>129</td>
</tr>
<tr>
<td>5</td>
<td>2013-11-01</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>2013-11-02</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>2013-11-06</td>
<td>129</td>
</tr>
<tr>
<td>6</td>
<td>2013-11-07</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>2013-11-01</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>2013-11-02</td>
<td>8</td>
</tr>
<tr>
<td>8</td>
<td>2013-11-01</td>
<td>28</td>
</tr>
<tr>
<td>8</td>
<td>2013-11-02</td>
<td>129</td>
</tr>
</tbody>
</table>

Below each of the following two queries, write its output.

(\texttt{SELECT amount FROM Sales WHERE amount \geq 25}); \quad (\texttt{SELECT amount FROM Sales WHERE amount \geq 25}) \quad \texttt{union} \quad (\texttt{SELECT amount FROM Sales WHERE eid \geq 6});

Solution:
-- First query:
csc343h-dianeh=> (SELECT amount FROM Sales WHERE amount >= 25);
 amount

 25
 129
 129
 28
 129
 (5 rows)

-- For the record, the second half of the union:
csc343h-dianeh=> (SELECT amount FROM Sales WHERE eid >= 6);
 amount

 129
 18
 18
 8
 28
 129
 (6 rows)

-- second query:
csc343h-dianeh=> (SELECT amount FROM Sales WHERE amount >= 25)
csc343h-dianeh-> union
csc343h-dianeh=> (SELECT amount FROM Sales WHERE eid >= 6);
 amount

 25
 8
 28
 18
 129
 (5 rows)
Part (b) [4 marks]

Complete each of the following queries so that they will find the highest value of amount in the Sales table.

SELECT *
FROM Sales s
WHERE amount ____________ (SELECT ___________________________ FROM Sales);

SELECT *
FROM Sales s
WHERE NOT EXISTS (__);

Solution:

csc343h-dianeh=> SELECT *
FROM Sales s
WHERE amount >=
(SELECT max(amount) FROM Sales);

<table>
<thead>
<tr>
<th>eid</th>
<th>day</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2013-11-06</td>
<td>129</td>
</tr>
<tr>
<td>6</td>
<td>2013-11-06</td>
<td>129</td>
</tr>
<tr>
<td>8</td>
<td>2013-11-02</td>
<td>129</td>
</tr>
</tbody>
</table>

(3 rows)

csc343h-dianeh=> SELECT *
FROM Sales s
WHERE NOT EXISTS
(SELECT * FROM Sales s2 WHERE
s2.amount > s.amount);

<table>
<thead>
<tr>
<th>eid</th>
<th>day</th>
<th>amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>2013-11-06</td>
<td>129</td>
</tr>
<tr>
<td>6</td>
<td>2013-11-06</td>
<td>129</td>
</tr>
<tr>
<td>8</td>
<td>2013-11-02</td>
<td>129</td>
</tr>
</tbody>
</table>

(3 rows)

Part (c) [5 marks]

Write a query in SQL to find the departments in which the minimum salary is at least 100. For each, report the department name and the sum of all salaries in the department.

Solution:

select dept, sum(salary)
from department join employee on dept = did
group by dept
having min(salary) >= 100;