Do not turn this page until you have received the signal to start.
(Please fill out the identification section above, write your name on the back of the test, and read the instructions below.)

Good Luck!

1: _____/ 4
2: _____/ 4
3: _____/15
4: _____/ 7

TOTAL: _____/30

This midterm consists of 4 questions on 8 pages (including this one). When you receive the signal to start, please make sure that your copy is complete. If you use any space for rough work, indicate clearly what you want marked.
Question 1. [4 marks]

Suppose that

- \(R_1 \) is a relation with \(t_1 \geq 1 \) tuples.
- \(R_2 \) is a relation with \(t_2 \geq 1 \) tuples.
- \(R_3 \) is a relation with \(t_3 \geq 1 \) tuples.
- Both \(R_1 \) and \(R_2 \) have the same \(a_1 \geq 1 \) attributes.
- \(R_3 \) has \(a_3 \geq 1 \) attributes.
- \(L \) is a list of attributes
- \(c \) is a boolean expression.

Assume that the expressions below are legal expressions of relational algebra. Fill in the table to indicate the number of tuples in the relation that is the result of each expression. Assume the set semantics.

<table>
<thead>
<tr>
<th>Expression</th>
<th>Minimum number of tuples</th>
<th>Maximum number of tuples</th>
</tr>
</thead>
<tbody>
<tr>
<td>((R_1 \cup \sigma_c R_2) \bowtie \Pi L R_1)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\Pi_L R_3 \cup (\Pi_L R_1 \cap \Pi_L R_2))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Question 2. [4 marks]

Suppose we have two relations: Patient(PID, height) and Caresfor(PID, doctor). Consider the following instance of that schema:

<table>
<thead>
<tr>
<th>Patient</th>
<th>PID</th>
<th>height</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>33</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>44</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Caresfor</th>
<th>PID</th>
<th>doctor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>33</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>96</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>20</td>
</tr>
</tbody>
</table>

Part (a) [2 marks]

Give the result (schema and data) returned by the following query. Use the same tabular format as above.

\[
S := \text{Patient} \bowtie \text{Caresfor}
\]

\[
T(PID, height, doctor) := \Pi_{S_2.PID, S_2.height, S_2.doctor} (\sigma_{S_1.doctor = S_2.doctor \land S_1.height > S_2.height} (\rho_{S_1(S)} \times \rho_{S_2(S)}))
\]

\[
Answer := \Pi_{height, doctor} (S - T)
\]

Part (b) [2 marks]

Describe what this query computes. Do not describe the steps it takes, only what is in the result, and make your answer general to any instance of the schema.
Question 3. [15 marks]

We used the following schema many times in lecture:

Relations

- Students(SID, surName, campus)
- Courses(CID, cName, WR)
- Offerings(OID, CID, term, instructor)
- Took(SID, OID, grade)

Integrity constraints

- Offerings[CID] ⊆ Courses[CID]
- Took[SID] ⊆ Students[SID]
- Took[OID] ⊆ Offerings[OID]

Part (a) [6 marks]

Consider all the writing requirement courses that Atwood has taught at one point or another. Write a query in relational algebra to report the instructors who have taught (it doesn’t matter what offering) every one of these. Use only the basic operators Π, σ, ×, ∩, ∪, −, ρ.
Part (b) [1 mark]

Make the smallest possible instance of Took that violates its key constraint but is otherwise valid.

Part (c) [8 marks]

Suppose we want to find all the instructors who have never taught a course that Clarke hasn’t taught at some point. Which of the following syntactically legal queries will report that?

(2 marks for each correct answer, -1 for each incorrect answer.)

1. \(Temp := (\Pi_{instructor,CID\ Offering}) - (\Pi_{instructor,CID\sigma_{instructor="Clarke"\ Offering}}) \)

 \(\Pi_{instructor\ Offering} - \Pi_{instructor\ Temp} \)

 Correct Incorrect

2. \(Temp := \Pi_{CID}[Offering - (\sigma_{instructor="Clarke"\ Offering})] \)

 \((\Pi_{instructor\ Offering}) - ((\Pi_{instructor\ Offering}) \bowtie Temp) \)

 Correct Incorrect

3. \(Temp := (\Pi_{CID\ Offering}) - (\Pi_{CID\sigma_{instructor="Clarke"\ Offering}}) \)

 \((\Pi_{instructor\ Offering}) - \Pi_{instructor\ (Offering \bowtie Temp)} \)

 Correct Incorrect

4. \(Temp := \Pi_{CID\sigma_{instructor\neq"Clarke"\ Offering}} \)

 \((\Pi_{instructor\ Offering}) - \Pi_{instructor\ (Offering \bowtie Temp)} \)

 Correct Incorrect
Question 4. [7 marks]

Consider the following schema about athletes and their results in the long jump event:

```sql
create table longjump (
    who int,
    distance float not null,
    t timestamp,
    primary key (who, t),
    foreign key (who) references athlete(aID)
);
create table athlete (
    aID int primary key,
    name text not null
);
```

Part (a) [3 marks]

Complete the `where` condition in the following SQL query so that it reports every athlete who jumped a distance that was not the shortest distance anyone ever jumped. If there are duplicates, report them all.

```sql
SELECT aid, name
FROM longjump NATURAL JOIN athlete
WHERE
```

Part (b) [1 mark]

Assume that your query correctly answers the question above. Is it possible that every athlete could appear in the result?
(One mark for a correct answer and -0.5 for an incorrect answer.)

Yes No

Part (c) [1 mark]

Can a tuple in table `longjump` have a value for `who` that is `null`?
(One mark for a correct answer and -0.5 for an incorrect answer.)

Yes No

Part (d) [2 marks]

Suppose we have a relation `Huh(a, b, c)`. Fill in the blanks below to make the queries legal:

```
SELECT MAX(a), c, MIN(b) from Huh ________________________________;
SELECT __________________ , _______________ FROM Huh GROUP BY a HAVING a < 50;
```