These exercises are to give you practice applying the Master Theorem to divide-and-conquer algorithms.

Reminder: The Master Theorem can be applied to recurrences of the form:

\[T(n) = \begin{cases}
 k & \text{if } n \leq B \\
 a_1 T(\lceil n/b \rceil) + a_2 T(\lfloor n/b \rfloor) + f(n) & \text{if } n > B
\end{cases} \]

where \(B, k > 0, b > 1, a_1, a_2 \geq 0, \) and \(a = a_1 + a_2 > 0. \) \(f(n) \) is the cost of splitting and recombining.

If \(f \in \theta(n^d) \), then

\[T(n) \in \begin{cases}
 \theta(n^d) & \text{if } a < b^d \\
 \theta(n^d \log n) & \text{if } a = b^d \\
 \theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases} \]

1. A non-empty array \(A \) with integer entries has the property that no odd number occurs at a lower index than an even number. Devise a divide-and-conquer algorithm for finding the highest index of an even number element, or -1 if \(A \) has no elements that are even numbers. Use the Master Theorem to bound the asymptotic time complexity of your algorithm.

2. Consider this informal algorithm for QuickSort of a non-empty array \(A \) of distinct integers

 (a) Choose a pivot, \(p \) from \(A \) in constant time
 (b) Partition \(A \) into \(A_{p^-} \) consisting of elements less than \(p \), \([p] \) itself, and \(A_{p^+} \) consisting of elements greater than \(p \). Recursively QuickSort \(A_{p^-} \) and \(A_{p^+} \)
 (c) Concatenate the sorted version of \(A_{p^-} \), \([p] \), and the sorted version of \(A_{p^+} \)

Write a recurrence \(T \), for the time complexity of QuickSorting \(A \). Assume the worst (that the constant-time choice of a pivot is consistently unlucky), and use repeated substitution to find a closed form for \(T \). Assume the best (that the constant-time choice of a pivot is consistently lucky) and use the Master Theorem to bound \(T \).