Outline

FSAs, continued

FSAs, formally

Notes
odd/even

L is the language of binary strings \{a, b\} with an even length.
Devise a machine for L.
Example: Even machine

Does $L(A) = L$? Proof by induction using state invariant
more odd/even

L is the language of binary strings with an even number of a

Devise a machine for L
Example: Even machine

Does $L(A) = L$? Proof by induction using state invariant
more odd/even

L is the language of binary strings with an even number of as, but even length.

Devise a machine for L.

Example: Even machine

Does \(L(A) = L \)? Proof by induction using state invariant
Example: Multiple of 3 machine
More odd/even: intersection

L is the language of binary strings with an even number of as, and at least one b.
Devise a machine for L.
More odd/even: union

L is the language of binary strings with an even number of as, or at least one b

Devise a machine that accepts L,
Building an automaton with formalities...

A FSA is a quintuple: \((Q, \Sigma, \delta, q_0, F)\)

- \(Q\) is set of states,
- \(\Sigma\) is finite, non-empty alphabet,
- \(\delta: Q \times \Sigma \mapsto 2^Q\) or \(\delta \subseteq Q \times \Sigma \times Q\) is transition function or transition relation,
- \(q_0\) is start state, and
- \(F\) is set of accepting states
Extended Transition Function

\[\delta^* : Q \times \Sigma^* \rightarrow 2^Q \]

\[\delta^*(q, s) = \begin{cases}
\{q\} & \text{if } s = \varepsilon \\
\delta(q', x) & \text{if } s' \in \Sigma^*, x \in \Sigma, s = s'x \\
& \text{and } q' \in \delta^*(q, s')
\end{cases} \]
Extended Transition Relation

\[\delta^* \subseteq Q \times \Sigma^* \times Q \]

\[\delta^*(q, s) = \begin{cases}
\{q\} & \text{if } s = \varepsilon \\
\delta(q', x) & \text{if } s' \in \Sigma^*, x \in \Sigma, s = s'x \\
& \text{and } q' \in \delta^*(q, s')
\end{cases} \]
Extended Transition Function - example
Example of NFA:

Give an NFA that recognizes the language $L = \{ \varepsilon, (ab + aba)^i, ab, ababa, abaaba, \ldots \}$
Configurations and Computation Steps of NFAs
Do DFA and NFA recognize the same languages? (i.e. are equivalent)