CSC236 *Intro. to the Theory of Computation*

Lecture 7: Master Theorem; more D&C; correctness

Amir H. Chinaei, Fall 2016

Office Hours: W 2-4 BA4222

ahchinaei@cs.toronto.edu

http://www.cs.toronto.edu/~ahchinaei/

Course page:

http://www.cdf.toronto.edu/~csc236h/fall/index.html

Section page:

http://www.cdf.toronto.edu/~csc236h/fall/amir_lectures.html
Last week

- application of recurrence relations to complexity of d&c algorithms
 - in particular *mergeSort*

this week

- master theorem
- *closestPair*
- recursive correctness
Example 63: mergeSort

- calculating a lower bound

\[T(n) \geq c \cdot n \cdot \log n \]

\[
T(n) \geq T\left(\frac{n}{2}\right) = \frac{n}{2} \log \frac{n}{2} + 2 \cdot \frac{n}{2} - 1
= \frac{n}{2} (\log n - \log 2) + \frac{n}{2} - 1
= \frac{n}{2} \log n + \frac{n}{2} - 1
\geq \frac{n}{2} \log n + \frac{n}{2} - 1
\geq \frac{n}{2} \log n
\]

\[c = \frac{1}{2} \quad n \geq 2 \]
Example 63: mergeSort

- calculating an upper bound

\[T(n) \leq c \, n \log n \]

\[T(n) \leq T(\hat{n}) \]

\[= \hat{n} \log \hat{n} + 2\hat{n} - 1 \]

\[\leq 2n \log 2n + 2.2n - 1 \]

\[= 2n (\log 2 + \log n) + 4n - 1 \]

\[= 2n \log n + 6n - 1 \]

\[\leq 2n \log n + 6n \]

\[\leq 2n \log n + 6n \log n \]

\[\leq 8n \log n \]

\[c = 8 \quad n \geq 2 \]

Keep in mind: \(T\left(\frac{n}{2}\right) \leq T(n) \leq T(\hat{n}) \)

and \(T(\hat{n}) = \hat{n} \log \hat{n} + 2\hat{n} - 1 \)
general d&c and master theorem

- D&C algorithms normally divide a problem of size n to a smaller problems of size $\frac{n}{b}$ where $a > 0, b > 1 \in \mathbb{N}$

- Let $g(x)$ denote the recombining cost (conquer), such that the corresponding recurrence relation is

$$T(n) = \begin{cases}
1 & n \leq B \in \mathbb{N} \\
 aT\left(\frac{n}{b}\right) + g(x) & n > B \in \mathbb{N}
\end{cases}$$

- When $g(x) = cn^d, c > 0 d \geq 0 \in \mathbb{R}$

$$T(n) \in \begin{cases}
\theta(n^d) & \text{if } a < b^d \\
\theta(n^d \log n) & \text{if } a = b^d \\
\theta(n^{\log_b a}) & \text{if } a > b^d
\end{cases}$$
Example 64: closestPair

\[d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \]
Example 64: closestPair

Brute Force

\[d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \]

\[s = \text{[set of points]} \]

```python
def closest_pair1(frm, to):
    min_d = d(s[0], s[1])
    for i in range(to - frm):
        for j in range(i + 1, to - frm + 1):
            dist = d(s[i], s[j])
            if dist < min_d:
                min_d = dist
    return min_d
```

Reurrences and D&C 7-8
Example 64: closestPair

$$d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$
$d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$

Example 64: closestPair

$s = \text{[set of points]}$

```python
def closest_pairDC0(frm, to):
    if to - frm > 1:
        mid = (frm + to) // 2
        half1 = closest_pairDC0(frm, mid)
        half2 = closest_pairDC0(mid + 1, to)
        c = min(half1, half2)
        border_min = border_bf(mid, c)
        return min(c, border_min)
    else:
        return d(s[frm], s[to])
```
analysis:
Example 64: closestPair

The distance between two points p_1 and p_2 is given by:

$$d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Divide & Conquer

C: closest distance in both halves

In this example: 2.8
Example 64: closestPair

\[d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \]

s = [set of points, sorted by x-coordinates]

def closest_pairDC1(frm, to):
 if to-frm > 1:
 mid = (frm+to)//2
 half1 = closest_pairDC1(frm, mid)
 half2 = closest_pairDC1(mid+1, to)
 c = min(half1,half2)
 mergesort(s, on y-coordinates)
 border_min = border_n(mid, c)
 return min(closest, border_min)
 else:
 return d(s[frm], s[to])
analysis:
Example 64: closestPair

\[d(p_1, p_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2} \]

s = [set of points, sorted by x-coordinates]

```python
def closest_pairDC(frm, to):
    if to - frm > 1:
        mid = (frm + to) // 2
        half1 = closest_pairDC(frm, mid)
        half2 = closest_pairDC(mid + 1, to)
        c = min(half1, half2)
        merge(half1, half2, y-coordinates)
        border_min = border_n(mid, c)
        return min(closest, border_min)
    else:
        return d(s[frm], s[to])
```
analysis:
Recently, we saw the application of *induction* in asymptotic analysis
- in particular, in the worst case time complexity of recursive algorithms

Let’s move on to see application of *induction* in a more important topic: **correctness** of recursive algorithms
- followed by correctness of iterative algorithms, next week
Example 73: correctness of binSearch (from Example 61)

def binSearch(x, A, b, e):
 if b == e:
 if x == A[b]:
 return b
 else:
 return -1
 else:
 m = (b + e) // 2 # midpoint
 if x <= A[m]:
 return binSearch(x, A, b, m)
 else:
 return binSearch(x, A, m+1, e)
how to devise the correctness proof:

✓ define the pre- & post- conditions for the algorithm
 ▪ preconditions:
 • conditions that the algorithm’s input should satisfy
 ▪ postconditions:
 • conditions that should be satisfied after the algorithm has run

✓ then, show:

preconditions \implies postconditions
Example 73: correctness of binSearch:

- binSearch(x, A, b, e):
 - preconditions:
 - elements of A (from b to e) are sorted non-decreasingly
 - elements of A and x are comparable
 - 0 ≤ b ≤ e
 - Len(A) = n = e − b + 1
 - postconditions:
 - binSearch(x, A, b, e) terminates and returns p such that b ≤ p ≤ e and x = A[p] if such a p exists; otherwise returns −1.
Example 73: correctness of binSearch:

- We want to show: preconditions \implies postconditions

 $P(n)$: if $0 \leq b \leq e$ where $A[b..e]$ is non-decreasing and $\operatorname{Len}(A) = n = e - b + 1$, and x is comparable to elements of A, the call to $\text{binSearch}(x, A, b, e)$ terminates and returns p such that $b \leq p \leq e$ and $x = A[p]$ if such a p exists; otherwise returns -1.

- Proof by complete induction.
 - Basis step:
 - Inductive step:
proof by induction:
proof by induction: